摘要:
An improved CoPt alloy magnetic recording disk for horizontal recording has a magnetic recording layer which includes oxygen, the oxygen being present preferably in the range of approximately 5 to 30 atomic percent. The resulting disk structure has substantially decreased intrinsic media noise at high linear recording density.
摘要:
A magnetic recording disk based on conventional disk technology has both an extremely smooth top surface and high coercivity, and is incorporated in a contact recording disk file which requires an extremely smooth head-disk interface and a disk with high coercivity. A superfinished untextured NiP coating on a disk substrate is oxidized to form a NiO film. The NiO film permits the subsequently sputter deposited magnetic layer to have much higher coercivity, which enables the disk to be used in contact recording applications. The NiO film and the later deposited layers making up the disk, including the top protective overcoat, conform to the smooth surface of the polished NiP, thus preserving the extremely smooth surface of the top layer of the disk, which is required for the head-disk interface in contact recording disk files. In the preferred process for forming the NiO film on the substrate, the substrate is annealed in air at a temperature below that which would cause the NiP film to crystallize.
摘要:
A disk drive includes a drive housing, a storage disk coupled to the drive housing and a head arm assembly coupled to the drive housing. The head arm assembly includes an adjuster and a slider coupled to the adjuster. As provided herein, the adjuster changes the gram load that is applied to the slider as the temperature near the adjuster changes. In one of the embodiments, the adjuster increases the gram load that is applied to the slider as the temperature near the adjuster decreases.
摘要:
A magnetic recording disk based on conventional disk technology has both an extremely smooth top surface and high coercivity, and is incorporated in a contact recording disk file which requires an extremely smooth head-disk interface and a disk with high coercivity. A superfinished untextured NiP coating on a disk substrate is oxidized to form a NiO film. The NiO film permits the subsequently sputter deposited magnetic layer to have much higher coercivity, which enables the disk to be used in contact recording applications. The NiO film and the later deposited layers making up the disk, including the top protective overcoat, conform to the smooth surface of the polished NiP, thus preserving the extremely smooth surface of the top layer of the disk, which is required for the head-disk interface in contact recording disk files. In the preferred process for forming the NiO film on the substrate, the substrate is annealed in air at a temperature below that which would cause the NiP film to crystallize.
摘要:
A disk drive includes a drive housing, an actuator arm mounted to the drive housing, a head suspension assembly secured to the actuator arm, a spindle secured to the drive housing, a storage disk positioned on the spindle and a spacer positioned on the spindle. The actuator arm includes a suspension mounting side and the spindle includes a disk mounting surface. A actual measured distance along a first axis between the suspension mounting side and the disk mounting surface is measured. The spacer is positioned between the disk mounting surface and the storage disk. The spacer has a spacer height along the first axis that is based upon the actual measured distance.
摘要:
A high-density longitudinal recording medium comprising a CoPtCrB alloy with a chromium content in excess of 17 atomic percent exhibits high coercivity, low noise, and high Curie temperatures. Films are prepared by sputter depositing a chromium or chromium alloy underlayer on a non-magnetic substrate. A strong [100] crystallographic orientation of the underlayer is required to achieve a low noise, high coercivity medium. This orientation is achieved by depositing the underlayer on a negatively biased substrate under high temperature, low pressure conditions. The oriented underlayer prevents the subsequently deposited CoPtCrB alloy from orienting itself in its preferred, c axis vertical orientation. The CoPtCrB alloy comprises 4 to 12 percent platinum, 18 to 23 percent chromium and 2 to 10 percent boron.