Abstract:
Disclosed is a system and method for controlling current in a switched reluctance motor by changing a dwell state including starting the motor in a normal mode, measuring current in the motor, comparing the measured current to a first threshold, triggering an interrupt if the measured current exceeds the first threshold, keeping a count of consecutive readings exceeding the first threshold, changing the dwell state from a first state to a second state if the measured current exceeds the first threshold and the count equals a set value, changing the dwell state from a second state to a third state if the measured current exceeds a second threshold, and triggering a fault condition if the measured current in the third state exceeds a third threshold.
Abstract:
The disclosed vacuum assembly can be mounted in a vehicle. The motor/fan assembly is positioned above a chassis wall. Lateral flanges on opposed sides of the tank support the tank in generally horizontal sliding motion from a forward position to an elevated rearward position. A rear flange supports the tank as it pivots to a mounted position in which an inlet on a removable lid on the tank communicates with a hose, and an outlet on the lid communicates with the motor/fan assembly. In a removed position, the inlet and outlet are disconnected. Alignment bosses fit in aligned openings when the tank is in the mounted position.
Abstract:
Embodiments of a switched reluctance (SR) motor for use in a integrated vacuum system for a vehicle are disclosed. The SR motor may receive input voltage directly from an electrical storage device used to start up an engine of the vehicle. The SR motor may include an encoder that triggers an optical sensor to provide signals to a motor controller. The motor controller may energize stator poles based on the received signals. The encoder may be mechanically phase-advanced with respect to poles of the rotor to ensure proper start-up of the SR motor. Commutations of the motor may occur before a point of maximum inductance where the rotor and stator are aligned. In a preferred embodiment, the input voltage received by the SR motor is in a range of 9-16 Volts DC, a maximum drawn current is 36 amps, and the phase advance is between 9-11 degrees.
Abstract:
The disclosed vacuum cleaner system for an automobile fits in a cavity in the vehicle and has a tank that can be removed in a lateral direction without tools and without detaching the vacuum hose. A circuit board that carries an electronic controller is positioned alongside the motor and extends generally parallel to both the axis of the motor and the lateral direction in which the tank is removed. Cooling air is drawn though a cooling air inlet on the cabin wall to the circuit board, and then one side of the motor, through the center of the motor, to the cooling fan. From there, it is blown into a cavity where it joins exhausted working air from the vacuum and is exhausted from the vehicle through an air release opening that leads to the exterior of the vehicle.
Abstract:
A control circuit for a motor includes a voltage regulator having a thermal shutdown apparatus that turns off the voltage regulator when the temperature of the control circuit rises above a pre-determined threshold level, wherein the voltage regulator is used to provide power to a plurality of insulated gate bipolar transistors controlling a plurality of stator windings of the motor. Thus the voltage regulator prevents the control circuit and the various components on the control circuit from being damaged from overheating. An embodiment of the control circuit is adapted to generate an error code in response to the shutdown of the voltage regulator and to monitor the operation of the motor to ensure that the motor has been turned off and then on before turning on the power supply to a plurality of phase windings.
Abstract:
A system and method of ensuring legitimacy of a sensor signal received from a rotor position sensor in a motor is provided that includes polling the sensor to determine a first state of the sensor signal, determining a first time delay by summing a first plurality of time constants, and initiating a first time delay. Also included is re-polling the sensor to determine a second state of the sensor signal, determining a second time delay by summing a second plurality of time constants, initiating a second time delay if the second state of the sensor signal is the same as the first state of the sensor signal, re-polling sensor to determine a third state of the sensor signal; and considering the sensor signal as a legitimate signal if the third state of the sensor signal is the same as the first and second states of the sensor signal.
Abstract:
The disclosed vacuum cleaner system for an automobile fits in a cavity in the vehicle and has a tank that can be removed in a lateral direction without tools and without detaching the vacuum hose. A circuit board that carries an electronic controller is positioned alongside the motor and extends generally parallel to both the axis of the motor and the lateral direction in which the tank is removed. Cooling air is drawn though a cooling air inlet on the cabin wall to the circuit board, and then one side of the motor, through the center of the motor, to the cooling fan. From there, it is blown into a cavity where it joins exhausted working air from the vacuum and is exhausted from the vehicle through an air release opening that leads to the exterior of the vehicle.
Abstract:
A vacuum assembly having a housing and a motor and motor shaft secured within the housing; a fan coupled to the motor shaft and an air intake port and an air exhaust port located within the housing; a circuit board mounted in a cooling air path in the housing, wherein the cooling air path is located between the air intake port and the air exhaust port such that the fan causes cool air to flow across the circuit board; a pulley assembly coupled to the motor shaft and including a disposable belt, the pulley assembly located in the housing in such position that the circuit board blocks access to the disposable belt; a first connector portion secured to the circuit board; a second connector portion coupled to a plurality of wires coupled to at least the motor; the first and second connector portions configured to mate in a single direction.
Abstract:
A sensing circuit is useful with a power outlet and a power tool having power supplied thereto via the power outlet. The sensing circuit includes a generator, a transmitter, and a detector. A first signal having a high frequency is developed by the generator and supplied to a first terminal of the power outlet by the transmitter. The detector is coupled to the second terminal of the power outlet and tuned in accordance with the high frequency to develop a second signal indicative of whether the power tool is coupled to the power outlet. The sensing circuit may be used in conjunction with a regulating circuit and a two-position switch useful for controlling the electrical energy supplied to the power tool and a vacuum cleaner having the power outlet disposed thereon.
Abstract:
A plug-mounted wriststrap detector and ground monitor includes hot, neutral and ground input terminals which are connected to corresponding terminals of a power outlet when the circuit is plugged in. A jack is provided to plug a wriststrap into the circuit to provide electrostatic protection to the user. Means are provided to detect that the user is wearing the wriststrap and that the wriststrap is properly connected to the circuit as a function of whether an a.c. signal of sufficient amplitude is detected coupled to the circuit by the wriststrap and/or user. Lamps and an audible alarm warn the user if the wriststrap is not properly connected. A precision ground integrity circuit is provided to detect whether an unsafe ground condition exists and to alert the user accordingly. The ground integrity circuit uses a constant current source and voltage comparator to determine that the ground impedance does not exceed a predetermined limit.