摘要:
Methods for producing macroscopic quantities of oxidized graphene nanoribbons are disclosed herein. The methods include providing a plurality of carbon nanotubes and reacting the plurality of carbon nanotubes with at least one oxidant to form oxidized graphene nanoribbons. The at least one oxidant is operable to longitudinally open the carbon nanotubes. In some embodiments, the reacting step takes place in the presence of at least one acid. In some embodiments, the reacting step takes place in the presence of at least one protective agent. Various embodiments of the present disclosure also include methods for producing reduced graphene nanoribbons by reacting oxidized graphene nanoribbons with at least one reducing agent. Oxidized graphene nanoribbons, reduced graphene nanoribbons and compositions and articles derived therefrom are also disclosed herein.
摘要:
Various embodiments of the present disclosure pertain to methods of making magnetic carbon nanoribbons. Such methods generally include: (1) forming carbon nanoribbons by splitting carbon nanomaterials; and (2) associating graphene nanoribbons with magnetic materials, precursors of magnetic materials, or combinations thereof. Further embodiments of the present disclosure also include a step of reducing the precursors of magnetic materials to magnetic materials. In various embodiments, the associating occurs before, during or after the splitting of the carbon nanomaterials. In some embodiments, the methods of the present disclosure further comprise a step of (3) functionalizing the carbon nanoribbons with functionalizing agents. In more specific embodiments, the functionalizing occurs in situ during the splitting of carbon nanomaterials. In further embodiments, the carbon nanoribbons are edge-functionalized. Additional embodiments of the present disclosure pertain to magnetic carbon nanoribbon compositions that were formed in accordance with the methods of the present disclosure.
摘要:
Various embodiments of the present disclosure pertain to methods of making magnetic carbon nanoribbons. Such methods generally include: (1) forming carbon nanoribbons by splitting carbon nanomaterials; and (2) associating graphene nanoribbons with magnetic materials, precursors of magnetic materials, or combinations thereof. Further embodiments of the present disclosure also include a step of reducing the precursors of magnetic materials to magnetic materials. In various embodiments, the associating occurs before, during or after the splitting of the carbon nanomaterials. In some embodiments, the methods of the present disclosure further comprise a step of (3) functionalizing the carbon nanoribbons with functionalizing agents. In more specific embodiments, the functionalizing occurs in situ during the splitting of carbon nanomaterials. In further embodiments, the carbon nanoribbons are edge-functionalized. Additional embodiments of the present disclosure pertain to magnetic carbon nanoribbon compositions that were formed in accordance with the methods of the present disclosure.
摘要:
Embodiments of the present disclosure pertain to methods of forming a polymer composite by exposing a solution that includes nanomaterials (e.g., functionalized graphene nanoribbons) and cross-linkable polymer components (e.g., thermoset polymers and monomers) to a microwave source, where the exposing results in the curing of the cross-linkable polymer component in the presence of the nanomaterial to form the polymer composite. The solution may be exposed to a microwave source in a geological formation such that the formed polymer composite becomes embedded with the geological formation and thereby enhances the stability of the geological formation. Additional embodiments of the present disclosure pertain to the aforementioned polymer composites.