摘要:
A continuous process for the preparation of monofunctional aromatic chloroformates (MAC) having the structure (I) wherein n is an integer from 1 to 5, and R1 represents hydrogen, a branched or unbranched alkyl group having from 1-15 carbon atoms, an aryl group which may be substituted or unsubstituted, a cycloaliphatic group which may be substituted or unsubstituted, or an arylalkyl group which may be substituted or unsubstituted, the method comprising the steps of a) introducing 1) an aqueous caustic solution; 2) a carbonyl chloride; 3) at least one monofunctional hydroxyaromatic compound; and 4) at least one inert organic solvent into a continuous reaction system; and b) effecting contact between 1), 2), 3) and 4) for a time and at conditions sufficient to produce a MAC of structure (I).
摘要:
The specification describes a continuous process for the preparation of monofunctional aromatic chloroformates (MAC) having the structure (I) wherein n is an integer from 1 to 5, and R1 represents hydrogen, a branched or unbranched alkyl group having from 1–15 carbon atoms, an aryl group which may be substituted or unsubstituted, a cycloaliphatic group which may be substituted or unsubstituted, or an arylalkyl group which may be substituted or unsubstituted.
摘要:
Copolyorganosiloxanecarbonates are prepared by first preparing an oligomeric aromatic polycarbonate, such as an oligomeric bisphenol A polycarbonate, in the presence of a tertiary amine as the only catalyst species; contacting the oligomeric polycarbonate mixture with a polyorganosiloxane bis(aryl)chloroformate, such as the bischloroformate of hydroxy-terminated eugenol polydimethylsiloxane; and introducing phosgene and/or chain termination agent either continuously or in stages. A feature of the process is the presence of dihydroxyaromatic compound in only one charge, at the beginning. The products have excellent physical properties, including transparency.
摘要:
Siloxane bischloroformates are prepared in a continuous process by phosgenating siloxane bisphenols in a flow reactor using a substantial excess of phosgene and sodium hydroxide. While very high levels (>95%) of conversion of the siloxane bisphenol to the corresponding siloxane bischloroformate are achieved using a flow reactor according to the method of the invention, only more modest conversion (˜90%) of the siloxane bisphenol to the corresponding siloxane bischloroformate is attained when analogous batch processes are employed. The process holds promise for use in the manufacture of silicone-containing copolycarbonates which requires high purity siloxane bischloroformate intermediates.
摘要:
This invention relates to a process and apparatus for the continuous preparation of mono and bis-chloroformate products of halogenated dihydroxy compounds by an interfacial process. The mono and bis-chloroformate products may optionally be converted to capped oligomers.
摘要:
A new method of converting oligomeric chloroformates to high molecular weight polycarbonate is presented. By carefully controlling the relative concentrations and amounts of hydroxyl and chloroformate groups present in the oligomeric polycarbonate, the method of the invention provides for the efficient preparation of polycarbonate while minimizing phosgene usage. The product polycarbonates prepared by the method of the invention are fully capped with no additional phosgene required beyond that needed to prepare the oligomeric chloroformate starting material. The method of the present invention provides polycarbonates having non-detectable levels (
摘要:
Thermally stable polymers comprising chain members derived from at least one 1,3-dihydroxybenzene moiety and at least one aromatic dicarboxylic acid moiety, said polymer being substantially free of anhydride linkages linking at least two mers of the polymer chain, are prepared using an interfacial method comprising the steps of: (a) combining at least one 1,3-dihydroxybenzene moiety and at least one catalyst in a mixture of water and at least one organic solvent substantially immiscible with water; (b) adding to the mixture from (a) a controlled stoichiometric ratio of at least one acid chloride and at least one base while maintaining the pH between about 4 and about 8.5, and (c) adjusting the pH of the reaction mixture to a value in the range of about 7 and about 9 following complete addition of acid chloride, and stirring the reaction mixture for a time sufficient to destroy any anhydride linkages in the polymer chain.
摘要:
Siloxane bischloroformates are prepared in a continuous process by phosgenating siloxane bisphenols in a flow reactor using a substantial excess of phosgene and sodium hydroxide. While very high levels (>95%) of conversion of the siloxane bisphenol to the corresponding siloxane bischloroformate are achieved using a flow reactor according to the method of the invention, only more modest conversion (˜90%) of the siloxane bisphenol to the corresponding siloxane bischloroformate is attained when analogous batch processes are employed. The process holds promise for use in the manufacture of silicone-containing copolycarbonates which requires high purity siloxane bischloroformate intermediates.
摘要:
In a continuous flow reactor one or more bisphenols is converted by the action of phosgene and aqueous base into a mixture of mono- and bisphenol chloroformates which are then treated with a catalyst, additional aqueous caustic and a monophenol to afford endcapped polycarbonates. At relatively high levels of added monophenol endcapped polycarbonate oligomers are obtained. The method is especially suited for the continuous preparation of endcapped oligomers of tetrabromobisphenol A polycarbonate. The method is characterized by efficient use of phosgene, and conversion of chloroformate groups to carbonate linkages aided by trialkylamine catalysts bearing at least one methyl group on nitrogen, such as N,N-dimethylbutylamine (DMBA).
摘要:
A method of preparing a polycarbonate comprising the steps of:a) charging at least one dihydroxy compound, an inert solvent, water, caustic, carbonyl halide, and catalyst to a vessel, and maintaining the pH of the reaction mixture between about 4 and about 12 during charging; andb) within an interval of between 0 and about 90% of the total carbonyl halide addition to the vessel, activating a reaction system that produces monofunctional aromatic chloroformates (MAC) and introducing the MAC to the vessel within the interval of 0 to about 90% of the total carbonyl halide addition to the vessel; where the MAC reaction system is coupled with the vessel, and where means are provided for delivery of the MAC from the reaction system to the vessel.