摘要:
Methods and systems are disclosed for computing one or more continuous wavelet transforms on a dedicated integrated circuit. The systems comprise an integrated circuit having a receiver, memory, and processing circuitry. The receiver receives input data corresponding to an input signal. The memory stores information corresponding to one or more wavelet functions scaled over a set of scales. The processing circuitry is configured to compute, in-parallel, various portions of a single continuous wavelet transform of the input signal based on the received input data and the stored information corresponding to a single wavelet function computed over a set of scales.
摘要:
The present disclosure relates generally to patient monitoring systems and, more particularly, to signal analysis for patient monitoring systems. In one embodiment, a method of analyzing a detector signal of a physiological patient sensor includes obtaining the detector signal from the physiological patient sensor, and determining a ratio of the signal between two or more channels. A distribution of the angles between the points of the ratio over time may be used to determine a true ratio or a ratio of ratios for use in the determination of a physiological parameter.
摘要:
Methods and systems are disclosed for producing a plurality of archetype signals in wavelet space at a plurality of wavelet scales. A signal is transformed using a continuous wavelet transform based at least in part on a wavelet function. A scale dependent archetype transformed signal is computed based at least in part on the transformed signal and based at least in part on a natural periodicity of the wavelet function used to transform the signal. Information may be derived about the signal from the archetype transform signal, and stored in memory.
摘要:
Methods and systems are disclosed for tuning first and second wavelet functions to resolve at least one component of a signal. A first characteristic frequency corresponding to a first scale band of interest is determined, and a first wavelet function is tuned to the first characteristic frequency in at least a region of a first scale band of interest. A second characteristic frequency corresponding to a second scale band of interest is determined, and a second wavelet function is tuned to the second characteristic frequency in at least a region of the second scale band of interest. A signal is transformed for the first and second wavelet functions using a continuous wavelet transform to create a transform signal, and a scalogram is generated based at least in part on the transformed signal.
摘要:
Methods and systems are discussed for determining venous oxygen saturation by calculating a ratio of ratios from respiration-induced baseline modulations. A calculated venous ratio of ratios may be compared with a look-up table value to estimate venous oxygen saturation. A calculated venous ratio of ratios is compared with an arterial ratio of ratios to determine whether baseline modulations are the result of a subject's respiration or movement. Such a determination is also made by deriving a venous ratio of ratios using a transform technique, such as a continuous wavelet transform. Derived venous and arterial saturation values are used to non-invasively determine a cardiac output of the subject.
摘要:
The present disclosure relates generally to patient monitoring systems and, more particularly, to signal analysis for patient monitoring systems. In one embodiment, a method of analyzing a detector signal of a physiological patient sensor includes obtaining the detector signal from the physiological patient sensor, and determining a ratio of the signal between two or more channels. A distribution of the angles between the points of the ratio over time may be used to determine a true ratio or a ratio of ratios for use in the determination of a physiological parameter.
摘要:
A patient monitoring system may be configured to use template matching in determining physiological parameters. A physiological signal may be monitored, and a wavelet transform may be performed. The wavelet transform, or parameters derived thereof such as energy distribution or relative phase difference, may be compared with one or more templates using template matching. Templates may be based on, for example, physiological data, mathematical models, or look-up tables, and may be pre-computed and stored. Physiological parameters may be determined based on the template matching results. Scale variability, confidence metrics, or both, may be used to aid in determining the physiological parameter.
摘要:
A patient monitoring system may determine portions of a PPG signal that correspond to artifacts, to a baseline shift that exceeds a threshold, or to a pulse-to-pulse variability that exceeds a threshold. The patient monitoring system may identify a contiguous portion of the PPG signal that does not include the determined portions. The contiguous portion of the PPG signal may be used to determine physiological information.
摘要:
Methods and systems are disclosed for producing a plurality of archetype signals in wavelet space at a plurality of wavelet scales. A signal is transformed using a continuous wavelet transform based at least in part on a wavelet function. A scale dependent archetype transformed signal is computed based at least in part on the transformed signal and based at least in part on a natural periodicity of the wavelet function used to transform the signal. Information may be derived about the signal from the archetype transform signal, and stored in memory.
摘要:
A patient monitoring system may determine portions of a PPG signal that correspond to artifacts, to a baseline shift that exceeds a threshold, or to a pulse-to-pulse variability that exceeds a threshold. The patient monitoring system may identify a contiguous portion of the PPG signal that does not include the determined portions. The contiguous portion of the PPG signal may be used to determine physiological information.