摘要:
An earth-boring bit, and a method of increasing the durability of the same, which includes the step providing a pliable sheet of a hardfacing matrix material. The pliable sheet of hardfacing material has a nickel and chromium matrix combined with a first element. The first element is selected from a group consisting of spherical sintered tungsten carbide, spherical cast tungsten carbide, and metallic glass. The hardfacing matrix material sheet is placed on a preselected surface of the drill bit. The hardfacing matrix material sheet is then fusion bonded to the drill bit.
摘要:
A method of non-destructively identifying and characterizing defects in a rotary drill component is provided. The method includes providing a drill component and an ultrasonic test system including a phased array ultrasonic transducer (PAUT). The method also includes acoustically coupling the PAUT to a surface location, transmitting focused ultrasonic acoustic waves at the location into the PAUT and recording a reflected acoustic response corresponding to a portion of a predetermined volume of a microstructure of the component associated with the location on the surface. The method also includes storing the response and moving one of the transducer or the component to a plurality of unique locations representative of the predetermined microstructure and repeating these steps. The method also includes processing the responses and providing an output signal to an output device configured to provide an output indicative of differences in the output signal within the predetermined volume of the microstructure.
摘要:
A method of making an earth-boring rotary drill bit including a bit body configured to carry one or more cutters for engaging a subterranean earth formation. The method includes providing a plurality of hard particles in a mold to define a particle precursor of the bit body. The method also includes infiltrating the particle precursor of the bit body with a molten matrix material comprising a shape memory alloy forming a hard particle-molten matrix material mixture, wherein the hard particles are randomly dispersed within the molten matrix material. The method further includes cooling the molten matrix material to solidify a matrix material and form the bit body comprising a particle-matrix composite material having the plurality of hard particles randomly dispersed throughout the matrix material.
摘要:
An earth-boring rotary drill bit includes a bit body configured to carry one or more cutters for engaging a subterranean earth formation, the bit body comprising a particle-matrix composite material having a plurality of hard particles dispersed throughout a matrix material, the matrix material comprising a shape memory alloy. The matrix material comprises a metal alloy configured to undergo a reversible phase transformation between an austenitic phase and a martensitic phase. The matrix material may include an Ni-based alloy, Cu-based alloy, Co-based alloy, Fe-based alloy or Ti-based alloy. The drill bit may be made by a method that includes: providing a plurality of hard particles in a mold to define a particle precursor of the bit body; infiltrating the particle precursor of the bit body with a molten matrix material comprising a shape memory alloy forming a particle-matrix mixture; and cooling the molten particle-matrix mixture to solidify the matrix material and forming a bit body having a particle-matrix composite material comprising a shape memory alloy.
摘要:
An earth-boring rotary drill bit includes a bit body configured to carry one or more cutters for engaging a subterranean earth formation, the bit body comprising a particle-matrix composite material having a plurality of hard particles dispersed throughout a matrix material, the matrix material comprising a shape memory alloy. The matrix material comprises a metal alloy configured to undergo a reversible phase transformation between an austenitic phase and a martensitic phase. The matrix material may include an Ni-based alloy, Cu-based alloy, Co-based alloy, Fe-based alloy or Ti-based alloy. The drill bit may be made by a method that includes: providing a plurality of hard particles in a mold to define a particle precursor of the bit body; infiltrating the particle precursor of the bit body with a molten matrix material comprising a shape memory alloy forming a particle-matrix mixture; and cooling the molten particle-matrix mixture to solidify the matrix material and forming a bit body having a particle-matrix composite material comprising a shape memory alloy.
摘要:
An earth-boring rotary drill bit includes a bit body configured to carry one or more cutters for engaging a subterranean earth formation, the bit body comprising a particle-matrix composite material having a plurality of hard particles dispersed throughout a matrix material, the matrix material comprising a shape memory alloy. The matrix material comprises a metal alloy configured to undergo a reversible phase transformation between an austenitic phase and a martensitic phase. The matrix material may include an Ni-based alloy, Cu-based alloy, Co-based alloy, Fe-based alloy or Ti-based alloy. The drill bit may be made by a method that includes: providing a plurality of hard particles in a mold to define a particle precursor of the bit body; infiltrating the particle precursor of the bit body with a molten matrix material comprising a shape memory alloy forming a particle-matrix mixture; and cooling the molten particle-matrix mixture to solidify the matrix material and forming a bit body having a particle-matrix composite material comprising a shape memory alloy.
摘要:
A bit is assembled by forming the bit, including a bit body and a plurality of cutting components; embedding at least one electrical circuit into the bit, the circuit including a temperature sensor; and providing a module to monitor the circuits and generate an indication of bit wear. The electrical circuit may experience a change in resistance or conductivity due to wear of the bit and/or changes in an earth formation adjacent the bit. The bit wear and/or formation changes may be displayed for an operator.
摘要:
In one aspect, the present disclosure provides an apparatus for determining formation density. One embodiment of the apparatus includes a bottomhole assembly having a drill bit attached to end thereof for drilling through a formation, a first sensor in the drill bit configured to provide first signals for determining a first density of the formation proximate to the drill, a second sensor distal from the first sensor configured to provide signals for determining density of a second density of the formation, and a processor configured to determine the formation density from the first density and the second density.
摘要:
In one aspect, the present disclosure provides an apparatus for determining formation density. One embodiment of the apparatus includes a bottomhole assembly having a drill bit attached to end thereof for drilling through a formation, a first sensor in the drill bit configured to provide first signals for determining a first density of the formation proximate to the drill, a second sensor distal from the first sensor configured to provide signals for determining density of a second density of the formation, and a processor configured to determine the formation density from the first density and the second density.
摘要:
A bit is assembled by forming the bit, including a bit body and a plurality of cutting components; embedding at least one electrical circuit into the bit, the circuit including a temperature sensor; and providing a module to monitor the circuits and generate an indication of bit wear. The electrical circuit may experience a change in resistance or conductivity due to wear of the bit and/or changes in an earth formation adjacent the bit. The bit wear and/or formation changes may be displayed for an operator.