摘要:
In a method and magnetic resonance (MR) apparatus to image a partial region of an examination subject by means of a multislice measurement, which partial region includes at least two measurement slices, and is located at least in part at the edge of a field of view of the magnetic resonance apparatus, for each voxel to be optimized that is located at the edge of the field of view, a gradient field is configured for each measurement slice of the partial region that is to be measured and is used to acquire magnetic resonance data in the multislice measurement. The gradient field is configured so as to cause a nonlinearity of the gradient field and a B0 field inhomogeneity to cancel at each of the aforementioned voxel to be optimized at the partial region at the edge of the field of view. An image of the partial region of the examination subject is determined from the magnetic resonance data acquired in this manner.
摘要:
In a method and magnetic resonance (MR) apparatus to image a partial region of an examination subject by means of a multislice measurement, which partial region includes at least two measurement slices, and is located at least in part at the edge of a field of view of the magnetic resonance apparatus, for each voxel to be optimized that is located at the edge of the field of view, a gradient field is configured for each measurement slice of the partial region that is to be measured and is used to acquire magnetic resonance data in the multislice measurement. The gradient field is configured so as to cause a nonlinearity of the gradient field and a B0 field inhomogeneity to cancel at each of the aforementioned voxel to be optimized at the partial region at the edge of the field of view. An image of the partial region of the examination subject is determined from the magnetic resonance data acquired in this manner.
摘要:
A method is disclosed for determining a location of a subarea of an area under examination in a magnetic resonance system. The subarea is arranged at the edge of a field-of-view of the magnetic resonance system. In at least one embodiment of the method, at least one slice position is determined for an MR image in which the B0 field at the edge of the MR image satisfies a homogeneity value. For the slice position determined an MR image is acquired which contains the subarea at the edge of the field-of-view and the location of the subarea of the object under examination is determined through the location of the subarea in the MR image.
摘要:
A method is disclosed for calculating a spatially resolved value of an absorption parameter for a positron emission tomography (PET) scan of an examination object via magnetic resonance tomography (MRT). Magnetic resonance data is acquired within a first region lying within a field of view of a magnetic resonance system and within a second region bordering on the first and lying at the edge of the field of view. The method includes the spatially resolved calculation of a first value of the absorption parameter from the first MR data within the first region and of a second value from the second MR data within the second region. A three-dimensional parameter map is obtained from the first value. This parameter map is extended by the second value such that within the first region and the second region the parameter map has the value of the absorption parameter in spatially resolved form.
摘要:
A method is disclosed for imaging a portion of an examination object in a magnetic resonance scanner. The portion is arranged at the edge of a field of view of the magnetic resonance scanner. During at least one embodiment of the method, a gradient field is produced such that a nonlinearity in the gradient field and a B0-field inhomogeneity cancel at a predetermined point at the edge of the field of view. Magnetic resonance data, which contains the predetermined point at the edge of the field of view, is acquired with the aid of the gradient field. An image of the portion of the examination object at the predetermined point is determined from the magnetic resonance data.
摘要:
A method is disclosed for performing a combined magnetic resonance/positron emission tomography scan of an examination object in an MR/PET system. An embodiment of the method entails acquiring first magnetic resonance data using a first readout gradient field. The first readout gradient field is chosen such that, at a location of the field of view of the magnetic resonance system, a distortion caused by a nonlinearity of the first readout gradient field and a distortion caused by a B0 field inhomogeneity substantially cancel each other out. First magnetic resonance images for planning the combined magnetic resonance/positron emission tomography session and determining an attenuation correction map for a positron emission tomography scan are determined on the basis of the first magnetic resonance data. Positron emission data and second magnetic resonance data are acquired using a second readout gradient field.
摘要:
According to an embodiment of a method, a first readout gradient field is determined in such a way that a distortion caused by a non-linearity of the first readout gradient field and a distortion caused by a B0 field inhomogeneity are essentially cancelled at a first location of a field of view of the magnetic resonance facility. Moreover, a second readout gradient field is determined in such a way that a distortion caused by a non-linearity of the second readout gradient field and a distortion caused by a B0 field inhomogeneity are essentially cancelled at a different second location of the field of view. Finally, a multiecho sequence is performed, wherein first magnetic resonance data is captured using the first readout gradient field after a 180° pulse and second magnetic resonance data is captured using the second readout gradient field after a further 180° pulse.
摘要:
A method is disclosed for imaging a portion of an examination object in a magnetic resonance scanner. The portion is arranged at the edge of a field of view of the magnetic resonance scanner. During at least one embodiment of the method, a gradient field is produced such that a nonlinearity in the gradient field and a B0-field inhomogeneity cancel at a predetermined point at the edge of the field of view. Magnetic resonance data, which contains the predetermined point at the edge of the field of view, is acquired with the aid of the gradient field. An image of the portion of the examination object at the predetermined point is determined from the magnetic resonance data.
摘要:
According to an embodiment of a method, a first readout gradient field is determined in such a way that a distortion caused by a non-linearity of the first readout gradient field and a distortion caused by a B0 field inhomogeneity are essentially cancelled at a first location of a field of view of the magnetic resonance facility. Moreover, a second readout gradient field is determined in such a way that a distortion caused by a non-linearity of the second readout gradient field and a distortion caused by a B0 field inhomogeneity are essentially cancelled at a different second location of the field of view. Finally, a multiecho sequence is performed, wherein first magnetic resonance data is captured using the first readout gradient field after a 180° pulse and second magnetic resonance data is captured using the second readout gradient field after a further 180° pulse.
摘要:
A method is disclosed for determining a location of a subarea of an area under examination in a magnetic resonance system. The subarea is arranged at the edge of a field-of-view of the magnetic resonance system. In at least one embodiment of the method, at least one slice position is determined for an MR image in which the B0 field at the edge of the MR image satisfies a homogeneity value. For the slice position determined an MR image is acquired which contains the subarea at the edge of the field-of-view and the location of the subarea of the object under examination is determined through the location of the subarea in the MR image.