Abstract:
In one embodiment, the disclosed method includes receiving a user selection of a machine system type from a plurality of machine system types, where the system types corresponding to specific machine component combination. The method also includes configuring alarms based on the machine system type, configuring calculations of vibration parameters based on the machine system type, wherein the calculations are adjusted for the machine system type, and configuring diagnostic information based on the machine system type.
Abstract:
In one embodiment, the disclosed method includes controlling operation of a machine system via actuators and a first set of signals received from sensors, receiving a second signal from a vibration sensor, calculating vibration parameters based on the second signal. The method further includes the steps of normalizing each of the vibration parameters and presenting the normalized vibration parameters in an operator interface. In another embodiment, the system includes a controller configured to receive sensor signals from a machine system and to control operation of the machine system via actuators. The system also includes a condition monitoring user interface configured to display normalized vibration parameters for the machine system.
Abstract:
In one embodiment, the disclosed method for lubricating a machine bearing system includes monitoring a bearing system using a vibration sensor, such as an accelerometer, receiving a signal from the vibration sensor, calculating a parameter based on the signal; and adding a lubricant to the bearing system based upon the parameter. In another embodiment, a system may include a vibration sensor, a monitor configured to receive a signal from the vibration sensor and calculate a spike energy value, and a lubrication device configured to add a lubricant to a bearing system based on the spike energy value. The system and method help reduce maintenance and repair costs, while prolonging the life of the machine system components being monitored.
Abstract:
In one embodiment, the disclosed method for lubricating a machine bearing system includes monitoring a bearing system using a vibration sensor, such as an accelerometer, receiving a signal from the vibration sensor, calculating a parameter based on the signal; and adding a lubricant to the bearing system based upon the parameter. In another embodiment, a system may include a vibration sensor, a monitor configured to receive a signal from the vibration sensor and calculate a spike energy value, and a lubrication device configured to add a lubricant to a bearing system based on the spike energy value. The system and method help reduce maintenance and repair costs, while prolonging the life of the machine system components being monitored.
Abstract:
In one embodiment, the disclosed method includes controlling operation of a machine system via actuators and a first set of signals received from sensors, receiving a second signal from a vibration sensor, calculating vibration parameters based on the second signal. The method further includes the steps of normalizing each of the vibration parameters and presenting the normalized vibration parameters in an operator interface. In another embodiment, the system includes a controller configured to receive sensor signals from a machine system and to control operation of the machine system via actuators. The system also includes a condition monitoring user interface configured to display normalized vibration parameters for the machine system.
Abstract:
In one embodiment, the disclosed method includes receiving a user selection of a machine system type from a plurality of machine system types, where the system types corresponding to specific machine component combination. The method also includes configuring alarms based on the machine system type, configuring calculations of vibration parameters based on the machine system type, wherein the calculations are adjusted for the machine system type, and configuring diagnostic information based on the machine system type.
Abstract:
There is provided a method for measuring abnormality detection parameters of a disconnect switch, comprising: releasably connecting a first sensor to the disconnect switch, the first sensor adapted to measure a first parameter related to a position of an arm of the disconnect switch, the disconnect switch comprising a rotating actuation element operatively connected to the arm for moving the arm between a closed position and an open position; releasably connecting a second sensor to the rotating actuation element, the second sensor adapted to measure a second parameter related to a torque of the rotating actuation element; moving the arm using the actuation element; measuring and storing in memory the first and second parameters while the arm is moving; and disconnecting the first and second sensors.
Abstract:
There is provided a method for measuring abnormality detection parameters of a disconnect switch, comprising: releasably connecting a first sensor to the disconnect switch, the first sensor adapted to measure a first parameter related to a position of an arm of the disconnect switch, the disconnect switch comprising a rotating actuation element operatively connected to the arm for moving the arm between a closed position and an open position; releasably connecting a second sensor to the rotating actuation element, the second sensor adapted to measure a second parameter related to a torque of the rotating actuation element; moving the arm using the actuation element; measuring and storing in memory the first and second parameters while the arm is moving; and disconnecting the first and second sensors