摘要:
A system and method for free space, optical remote sensing of a potential threat agent using spectrally responsive sensor material. In one example the sensor material is formed by particles, which in one particular form are porous photonic crystals. The particles are dispersed into an area being monitored for the presence of the potential threat agent. A pair of lasers is used to generate optical light beams that are directed at the sensor particles after the particles have been dispersed. The light reflected by the sensor particles is then analyzed. The presence of the potential threat agent causes a shift in the spectral peak of light reflected from the sensor particles that can be sensed using photo detectors and a processing subsystem. The system can be tuned to remotely detect for specific chemical, biological or environmental agents that may be present within a given area.
摘要:
A system and method for free space, optical remote sensing of a potential threat agent using spectrally responsive sensor material. In one example the sensor material is formed by particles, which in one particular form are porous photonic crystals. The particles are dispersed into an area being monitored for the presence of the potential threat agent. A pair of lasers is used to generate optical light beams that are directed at the sensor particles after the particles have been dispersed. The light reflected by the sensor particles is then analyzed. The presence of the potential threat agent causes a shift in the spectral peak of light reflected from the sensor particles that can be sensed using photo detectors and a processing subsystem. The system can be tuned to remotely detect for specific chemical, biological or environmental agents that may be present within a given area.
摘要:
A method of generating three-dimensional nanostructures that includes providing a silicon substrate, creating a porous silicon template from the silicon substrate, wherein the template is created to have a predetermined configuration, depositing a predetermined material on the porous silicon template, and removing the porous silicon template from the deposited material to leave a freestanding nanostructure.
摘要:
The invention is related to optical particles (10), use of optical particles in sensing applications, and methods of fabricating optical particles that can target a desired analyte. The invention is also related to the self assembly of individual optical particles. An advantage of the invention is that it includes self-assembling individual photonic crystal sensors onto a target. In an embodiment of the invention, a processed sensor structure having two generally opposing surfaces is provided, wherein each of the opposing surfaces have different surface affinities, with a first optical structure formed on one of the opposing surfaces, and a second optical structure formed on the other of the opposing surfaces. The chemically and optically asymmetric opposing surfaces will spontaneously align at an organic liquid/water interface. Changes in the optical response of at least one of the opposing surfaces indicate the presence of a particular analyte for sensing applications.