Abstract:
According to one embodiment, a strain sensing element provided on a deformable substrate includes: a first magnetic layer; a second magnetic layer; a spacer layer; and a bias layer. Magnetization of the second magnetic layer changes according to deformation of the substrate. The spacer layer is provided between the first magnetic layer and the second magnetic layer. The second magnetic layer is provided between the spacer layer and the bias layer. The bias layer is configured to apply a bias to the second magnetic layer.
Abstract:
Embodiments of the invention include a method for fabricating a semiconductor device, the resulting structure, and a method for using the resulting structure. A substrate is provided. A hard mask layer is patterned over at least a portion of the substrate. Regions of the substrate not protected by the hard mask are doped to form a source region and a drain region. The hard mask layer is removed. A dielectric layer is deposited on the substrate. An insulative layer is deposited on the dielectric layer. A nano-channel is created by etching a portion of the insulative layer which passes over the source region and the drain region.
Abstract:
A micromechanical device capable of providing out-of-plane motion and force generation in response to an in-plane strain applied to the device is provided. Embodiments of the present invention comprise one or more islands that are operatively coupled with one or more hinges. The hinges are operative for inducing rotation of the islands when a lateral strain is applied to the structure. In some embodiments, the hinges are also electrically conductive such that they enable electrical communication between the one or more islands and devices external to the structure. Some embodiments of the present invention are particularly well suited for use in biological applications. Some devices in accordance with the present invention are fabricated using conventional planar processes, such as flex-circuit fabrication techniques.
Abstract:
A method is provided for producing a microstructured molded object that is intended for culturing of biological cells. According to this method, a plastically deformable first porous film is prepared, as well as a deformable second film and a deformable sacrificial film. The first, second and sacrificial film are placed in a stack. Next, the sacrificial film is subjected to pressure to press the stack into a mold. The mold has recesses, such that deformed regions in the form of cavities are produced in the sacrificial film, the first film and the second film, and undeformed regions remain. During the pressing of the film stack into the mold, the first film and the second film are joined to each other, so that they form a composite film. At least portions of the deformed regions of the second film are etched so that sections of the second film are chemically dissolved. In these sections of the second film, sections in the deformed regions of the first film are opened up, so that the pores in these sections are again free.
Abstract:
A method is provided of forming a micro-channel structure for use in a biosensing device. A master structure is provided having a first configuration of micro-channels with respective first fluid flow characteristics. One or more regions of material are deposited onto the master structure using a fluidjet process so as to modify the first configuration into a second configuration having respective second fluid flow characteristics, different from the first. Functional biosensing devices formed using the method are also described.
Abstract:
A semiconductor device includes: a silicon substrate; and a silicon oxide film disposed on the silicon substrate. The silicon oxide film includes a part, which separates from a surface of the silicon substrate, so that the silicon oxide film provides a three-dimensional construction. By using the three-dimensional construction, an additional function such as a resistor or a capacitor is easily added in the device. Further, a manufacturing method of this three-dimensional construction is simple and has a low cost.
Abstract:
A method for bonding a first substrate and a second substrate includes the steps of forming the main body of at least one of the first substrate and the second substrate from an optically transmissive material that transmits light, forming at least part of the bonding faces of the first substrate and the second substrate from a thermoplastic resin that contains an optical absorption agent that absorbs light, and bonding the first substrate and the second substrate together by irradiating the optical absorption agent of the bonding faces with light via the substrate that transmits light.
Abstract:
A semiconductor device includes: a silicon substrate; and a silicon oxide film disposed on the silicon substrate. The silicon oxide film includes a part, which separates from a surface of the silicon substrate, so that the silicon oxide film provides a three-dimensional construction. By using the three-dimensional construction, an additional function such as a resistor or a capacitor is easily added in the device. Further, a manufacturing method of this three-dimensional construction is simple and has a low cost.
Abstract:
A method of generating three-dimensional nanostructures that includes providing a silicon substrate, creating a porous silicon template from the silicon substrate, wherein the template is created to have a predetermined configuration, depositing a predetermined material on the porous silicon template, and removing the porous silicon template from the deposited material to leave a freestanding nanostructure.
Abstract:
A method of manufacturing a microfluidic structure, in particular a biochip, said method consisting at least: in manufacturing a three-dimensional micro-mould with means for defining a three-dimensional geometry including at least micro-wells and micro-grooves or micro-channels interconnecting said micro-wells; and in using only said three-dimensional micro-mould for molding a membrane made of a polymer material, said membrane incorporating at least said micro-wells and said micro-grooves or micro-channels, said membrane constituting a three-dimensional microfluidic structure.