摘要:
An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.
摘要:
An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.
摘要:
A system and method satisfies temperature and pressure requirements of solid oxide fuel cell system 10 in a manner that increases the overall efficiency and decreases the overall weight of system 10. The system and method include a secondary blower 30 for boosting air stream pressure level sufficient for operation of a reformer 12 that is designed to minimize pressure drop; an integrated heat exchanger 18 for recovering heat from exhaust 36 and comprising multiple flow fields 18A, 18B, 18C for ensuring inlet temperature requirements of a solid oxide fuel cell 14 are met; and a thermal enclosure 46 for separating hot zone 48 components from cool zone 50 components for increasing thermal efficiency of the system and better thermal management.
摘要:
A system and method satisfies temperature and pressure requirements of solid oxide fuel cell system 10 in a manner that increases the overall efficiency and decreases the overall weight of system 10. The system and method include a secondary blower 30 for boosting air stream pressure level sufficient for operation of a reformer 12 that is designed to minimize pressure drop; an integrated heat exchanger 18 for recovering heat from exhaust 36 and comprising multiple flow fields 18A, 18B, 18C for ensuring inlet temperature requirements of a solid oxide fuel cell 14 are met; and a thermal enclosure 46 for separating hot zone 48 components from cool zone 50 components for increasing thermal efficiency of the system and better thermal management.
摘要:
An interconnect for a solid oxide fuel cell includes a conductive structure having first portions defining a first contact zone, second portions defining a second contact zone which is spaced from the first contact zone, and intermediate portions extending between the first and second portions, wherein the intermediate portions are joined to the first portions through first corners, and wherein the intermediate portions are joined to the second portions through second corners, and wherein the first corners have a smaller radius than the second corners.
摘要:
An interconnect for a solid oxide fuel cell includes a conductive structure having first portions defining a first contact zone, second portions defining a second contact zone which is spaced from the first contact zone, and intermediate portions extending between the first and second portions, wherein the intermediate portions are joined to the first portions through first corners, and wherein the intermediate portions are joined to the second portions through second corners, and wherein the first corners have a smaller radius than the second corners.
摘要:
A seal is provided for use in a solid oxide fuel cell, wherein the seal is formed of alternating adjacent layers of a fiber tow material and a foil material. A solid oxide fuel cell stack is also disclosed and is formed of repeating cell units, each cell unit having a plurality of fuel cell stack components defining opposed component surfaces, and the seal as described above positioned between the opposed component surfaces. A process is also provided for manufacturing a composite seal for a solid oxide fuel cell, and the process including the steps of: (a) feeding a quantity of spooled fiber tow material through an inert bonding agent to form a coated fiber tow material; (b) winding the coated fiber tow material about a mandrel to form a wound layer of fiber tow material; (c) feeding a quantity of spooled foil material about the wound layer of fiber tow material to form a wound layer of foil material; and (d) repeating steps (a) through (c) until forming a composite seal having desired thickness and width.
摘要:
A fuel cell includes a cell having a solid oxide electrolyte between electrodes. The cell has a first coefficient of thermal expansion. A metallic support is in electrical connection with one of the electrodes. The metallic support includes a metal substrate and a compliant porous nickel layer that is bonded to the metal substrate between the cell and the metal substrate. The metal substrate has a second coefficient of thermal expansion that nominally matches the first coefficient of thermal expansion of the cell. The metal substrate has a first stiffness and the compliant porous nickel layer has a second stiffness that is less than the first stiffness such that the compliant porous nickel layer can thermally expand and contract with the metal substrate.
摘要:
A fuel cell includes a cell having a solid oxide electrolyte between electrodes. The cell has a first coefficient of thermal expansion. A metallic support is in electrical connection with one of the electrodes. The metallic support includes a metal substrate and a compliant porous nickel layer that is bonded to the metal substrate between the cell and the metal substrate. The metal substrate has a second coefficient of thermal expansion that nominally matches the first coefficient of thermal expansion of the cell. The metal substrate has a first stiffness and the compliant porous nickel layer has a second stiffness that is less than the first stiffness such that the compliant porous nickel layer can thermally expand and contract with the metal substrate.
摘要:
A method of making a passenger conveyor handrail includes forming a drive member having a plurality of longitudinally spaced drive surfaces. The drive member has a longitudinal stiffness for maintaining a desired spacing between the drive surfaces. The drive member is inserted into a molding device. A gripping surface portion of the handrail is formed using the molding device such that the gripping surface portion and the drive member are secured together. Another method includes forming a belt drive member having a plurality of teeth that establish a plurality of longitudinally spaced drive surfaces. The belt has a longitudinal stiffness for maintaining a desired spacing between the drive surfaces. Each of the teeth extends across an entire width of the belt. The belt is secured to a gripping surface portion of the handrail.