摘要:
An implantable medical device includes a radio-frequency (RF) telemetry circuit and a power connection module through which the RF telemetry circuit is connected to an energy source such as a battery. The power connection module connects power from the energy source to at least one portion of the RF telemetry circuit when a user initiates an RF telemetry session. After the RF telemetry session is completed, the power connection module shuts off the at least one portion of the RF telemetry circuit. Power-on examples include a wireless telemetry activation signal received by a low power radio receiver in the implantable device, a physical motion detected by an activity sensor in the implantable device, an activation of an inductive telemetry circuit in the implantable device, a magnetic field detected by a magnetic field detector in the implantable device, and/or a telemetry activation signal detected by a sensing circuit included in the implantable device. Power-off examples include a wireless termination signal received by the implantable device, a delay timeout following the RF telemetry session, and/or a signal received by an inductive telemetry circuit in the implantable device.
摘要:
An implantable medical device includes a radio-frequency (RF) telemetry circuit connected to an energy source through a power connection module to obtain power when a user initiates an RF telemetry session. After the session is completed, the power connection module shuts off the at least one portion of the RF telemetry circuit. Power-on examples include a wireless telemetry activation signal received by a low power radio receiver in the implantable device, a physical motion detected by an activity sensor therein, an activation of an inductive telemetry circuit therein, a magnetic field detected by a magnetic field detector therein, and/or a telemetry activation signal detected by a sensing circuit included therein. Power-off examples include a wireless termination signal received by the implantable device, a delay timeout after the session, and/or a signal received by an inductive telemetry circuit in the implantable device.
摘要:
A method comprises connecting at least one portion of a far-field radio-frequency (RF) first telemetry circuit in an implantable medical device to an energy source through a power connection module, detecting information included in a first predetermined wireless signal, changing a conductivity state of the power connection module when the information in the first predetermined wireless signal is detected to couple power to the at least one portion of the first telemetry circuit, detecting a second predetermined wireless signal, and changing a conductivity state of the power connection module to decouple power to the at least one portion of the first telemetry circuit when the second predetermined wireless signal is detected and the first telemetry circuit enters an idle state.
摘要:
A method comprises connecting at least one portion of a far-field radio-frequency (RF) first telemetry circuit in an implantable medical device to an energy source through a power connection module, detecting information included in a first predetermined wireless signal, changing a conductivity state of the power connection module when the information in the first predetermined wireless signal is detected to couple power to the at least one portion of the first telemetry circuit, detecting a second predetermined wireless signal, and changing a conductivity state of the power connection module to decouple power to the at least one portion of the first telemetry circuit when the second predetermined wireless signal is detected and the first telemetry circuit enters an idle state.
摘要:
A telemetry system enabling radio frequency (RF) communications between an implantable medical device and an external device, or programmer, in which the RF circuitry is normally maintained in a powered down state in order to conserve power. At synchronized wakeup intervals, one of the devices designated as a master device powers up its RF transmitter to request a communications session, and the other device designated as a slave device powers up its RF transmitter to listen for the request. Telemetry is conducted using a far field or near field communication link.
摘要:
An apparatus and method for enabling far-field radio-frequency communications with an implantable medical device in which an antenna is embedded within a dielectric compartment of the device. A helical antenna may be employed to save space while still permitting far-field telemetry over a desired range of frequencies.
摘要:
An apparatus and method for enabling far-field radio-frequency communications with an implantable medical device in which an antenna is embedded within a dielectric compartment of the device. A helical antenna may be employed to save space while still permitting far-field telemetry over a desired range of frequencies.
摘要:
An implantable medical device includes an acoustic transducer for intra-body communication with another medical device via an acoustic couple. The acoustic transducer includes one or more piezoelectric transducers. In one embodiment, an implantable medical device housing contains a cardiac rhythm management (CRM) device and an acoustic communication circuit. The acoustic transducer is electrically connected to the acoustic communication circuit to function as an acoustic coupler and physically fastened to a wall of the implantable housing, directly or via a supporting structure.
摘要:
An implantable medical device comprising a far field RF transmitter and receiver, a controller circuit communicatively coupled to the RF transmitter and receiver, and a wakeup timer circuit integral to, or communicatively coupled to, the controller. The controller is configured to initiate power up of the RF transmitter and receiver during a wakeup interval defined by the wakeup timer circuit, detect a digital key received from a second device during the wakeup interval, transmit a response using the RF transmitter when the digital key is received, and receive a communication from the second device and resynchronize the wake-up timer according to a time of the communication.
摘要:
An implantable medical device comprises a near field telemetry module to wirelessly receive first information into the IMD, a far field telemetry module to wirelessly receive second information into the IMD, and a processor in electrical communication with the near field telemetry module and the far field telemetry module. The processor is configured to establish, in relation to a communication signal received by the near field telemetry module, a time period during which communication via the far field telemetry module is available, and operate the IMD according to the received second information upon receiving third information via the near field telemetry link.