摘要:
An implantable medical device includes a radio-frequency (RF) telemetry circuit and a power connection module through which the RF telemetry circuit is connected to an energy source such as a battery. The power connection module connects power from the energy source to at least one portion of the RF telemetry circuit when a user initiates an RF telemetry session. After the RF telemetry session is completed, the power connection module shuts off the at least one portion of the RF telemetry circuit. Power-on examples include a wireless telemetry activation signal received by a low power radio receiver in the implantable device, a physical motion detected by an activity sensor in the implantable device, an activation of an inductive telemetry circuit in the implantable device, a magnetic field detected by a magnetic field detector in the implantable device, and/or a telemetry activation signal detected by a sensing circuit included in the implantable device. Power-off examples include a wireless termination signal received by the implantable device, a delay timeout following the RF telemetry session, and/or a signal received by an inductive telemetry circuit in the implantable device.
摘要:
An implantable medical device includes a radio-frequency (RF) telemetry circuit connected to an energy source through a power connection module to obtain power when a user initiates an RF telemetry session. After the session is completed, the power connection module shuts off the at least one portion of the RF telemetry circuit. Power-on examples include a wireless telemetry activation signal received by a low power radio receiver in the implantable device, a physical motion detected by an activity sensor therein, an activation of an inductive telemetry circuit therein, a magnetic field detected by a magnetic field detector therein, and/or a telemetry activation signal detected by a sensing circuit included therein. Power-off examples include a wireless termination signal received by the implantable device, a delay timeout after the session, and/or a signal received by an inductive telemetry circuit in the implantable device.
摘要:
A method comprises connecting at least one portion of a far-field radio-frequency (RF) first telemetry circuit in an implantable medical device to an energy source through a power connection module, detecting information included in a first predetermined wireless signal, changing a conductivity state of the power connection module when the information in the first predetermined wireless signal is detected to couple power to the at least one portion of the first telemetry circuit, detecting a second predetermined wireless signal, and changing a conductivity state of the power connection module to decouple power to the at least one portion of the first telemetry circuit when the second predetermined wireless signal is detected and the first telemetry circuit enters an idle state.
摘要:
A method comprises connecting at least one portion of a far-field radio-frequency (RF) first telemetry circuit in an implantable medical device to an energy source through a power connection module, detecting information included in a first predetermined wireless signal, changing a conductivity state of the power connection module when the information in the first predetermined wireless signal is detected to couple power to the at least one portion of the first telemetry circuit, detecting a second predetermined wireless signal, and changing a conductivity state of the power connection module to decouple power to the at least one portion of the first telemetry circuit when the second predetermined wireless signal is detected and the first telemetry circuit enters an idle state.
摘要:
A DC to DC converter having a flange attached to the housing. The flange configured to electrically isolate, insulate and shield the DC to DC converter from an underlying circuit board. The flange may be further configured to meet creepage distances and air clearances required by various regulatory and certification agencies.
摘要:
A method and system for the detection of electromagnetic interference is disclosed in which a telemetry coil or other magnetic sensor is used to detect a magnetic signal. If a magnetic signal is determined to be a non-telemetry signal and is time-correlated with the onset of an increase in heart rate, electromagnetic interference is assumed to be present.
摘要:
A self-diagnostic system for an implantable cardiac device such as a pacemaker, cardioverter, or resynchronization device which utilizes a subcutaneous ECG channel is described. The subcutaneous ECG channel allows the device to, in real time and independent of the standard pacing and sensing circuitry, verify the presence of pacing spikes, chamber senses, and other device outputs and hence establish and verify device integrity.
摘要:
Systems and methods of managing features or functions of an implantable cardiac device involve forming a baseline evoked response template prior to delivery of defibrillation therapy to a patient's heart, and acquiring a post-shock evoked response signal subsequent to defibrillation therapy delivery. The baseline evoked response template is compared to the post-shock evoked response signal. A determination is made whether to enable, disable or adjust a cardiac device feature based on the comparison. The cardiac device feature may be a therapy feature, a monitoring feature, or a diagnostic feature.
摘要:
Systems and methods of managing features or functions of an implantable cardiac device involve forming a baseline evoked response template prior to delivery of defibrillation therapy to a patient's heart, and acquiring a post-shock evoked response signal subsequent to defibrillation therapy delivery. The baseline evoked response template is compared to the post-shock evoked response signal. A determination is made whether to enable, disable or adjust a cardiac device feature based on the comparison. The cardiac device feature may be a therapy feature, a monitoring feature, or a diagnostic feature.
摘要:
A CRM system enhances intracardiac electrogram-based arrhythmia detection using a wireless electrocardiogram (ECG), which is a signal sensed with implantable electrodes and approximating a surface ECG. In one embodiment, an intracardiac electrogram allows for detection of an arrhythmia, and the wireless ECG allows for classification of the detected arrhythmia by locating its origin. In another embodiment, the wireless ECG is sensed as a substitute signal for the intracardiac electrogram when the sensing of the intracardiac electrogram becomes unreliable. In another embodiment, a cardiac signal needed for a particular purpose is selected from one or more intracardiac electrograms and one or more wireless ECGs based on a desirable signal quality. In another embodiment, intracardiac electrogram-based arrhythmia detection and wireless ECG-based arrhythmia detection confirm with each other before indicating a detection of arrhythmia of a certain type.