摘要:
Method and apparatus for making limited internal-node communication facilities externally visible in a packet switching network. Internal-node communication facilities are called intranode links, can include any cable, channel, bus, etc. over which data passes, and are used to connect the multiple subnodes within a given node. Each subnode contains a switching mechanism and routes packets to other nodes, subnodes, or user applications. Each node provides network control functions such as topology, directory, path selection, and bandwidth management which can manage intranode links in the same manner that internode links are currently managed.
摘要:
Method and apparatus for managing internal-node communications in a packet switching network by calculating optimal routes for packets and addressing subnodes within packet nodes using a specific message format. Internal communication facilities called intranode links connect multiple subnodes within nodes. Each subnode contains a switching mechanism and routes packet to other nodes, subnodes, or user applications using a specific message format. The message format allows specific subnodes anywhere in the network to the addressed by any other subnode, making communications more efficient and simplifying the management of internode links.
摘要:
Access agents in nodes at the LAN/WAN interface are formed into a group of access agents so that the access agents may be managed by the WAN as a group. The group must maintain group operation integrity in that if communications between agents in the group are broken, the access agents will coalesce into subgroups and continue performing communication jobs as a group activity. Each of the access agents contains a finite state machine to perform the tasks of group formation and maintenance. The formation of interconnected access agents into a group is accomplished by one access agent being identified as a group leader. All other access agents communicating with the group leader within the LAN may then join the group. The maintenance of group activity integrity is accomplished by detecting a break in group communication integrity and thereafter reforming the group into multiple smaller groups. The maintenance of group operation integrity also includes the merger of small groups into a large group when a bridge is added between LAN segments.
摘要:
A multinode, multicast communications network has a distributed control for the creation, administration and operational mode selection operative in each of the nodes of the network. Each node is provided with a Set Manager for controlling either creation of, administration or access to a set of users to whom a multicast is to be directed. The Set Manager maintains a record of the local membership of all users associated with the node in which the Set Manager resides. A given Set Manager for each designated set of users is assigned the task of being the Set Leader to maintain membership information about the entire set of users in the multicast group. One of the Set Managers in the communications network is designated to be the Registrar which maintains a list of all the Set Leaders in the network. The Registrar insures that there is one and only one Set Leader for each set of users, answers inquiries about the membership of the sets and directs inquiries to appropriate Set Leaders if necessary. All of the set creation, administration and control functions can therefore be carried out by any node of the system and provision is made to assume the function at a new node when failure or partition in the network occurs.
摘要:
In a multicast network communication system, administration of the communication path making up the multicast tree itself has been separated from control and administration of the network. Creation of a multicast distribution tree and control over the membership thereof, is separately controlled independently from the creation and use of the tree transmission path used to communicate among the members of a multicast set. Transmission distribution trees are set up when a transmission request is received and the properties of the transmission path that is required are known. Transmission paths are created and controlled by all nodes in the communications system, each node having necessary control code and processors for responding to requests from set members to transmit a message to groups of users by creating and activating the necessary tree communication path distribution linkages. A distribution tree is created by the Tree Leader by generating a tree address using a random number generator. A tree address correlator is generated utilizing network and node identifiers unique for the network, and a list of subnodes or users connected for each member of the multicast tree set is generated. Using this information, a tree distribution path is computed to cover all of the subnodes required and a tree set up request message is sent by the Tree Leader along a computed path to each involved subnode. Each subnode returns a message indicating whether the tree address is already in use or is available for use. Successfully negotiated tree addresses are marked at the path link initiation and termination points at each node through the network.
摘要:
Access control for a packet communications network includes a dynamic bandwidth updating mechanism which continuously monitors the mean bit rate of the signal source and the loss probability of the connection. These values are filtered to remove noise and then used to test whether the values fall within a pre-defined acceptable adaptation region in the mean bit rate, loss probability plane. Values falling outside of this region trigger bandwidth updating procedures which, in turn, result in acquiring a new connection bandwidth, and determining new filter parameters and new parameters for a leaky bucket access mechanism.
摘要:
A method is disclosed for determining whether to use a preempt/resume protocol or an alternate protocol in transmitting data packets from a local system to a remote system. Each system informs the other whether it supports preempt/resume and provides the sizes of the largest low priority data packets it can send and receive. The local system always elects the alternate protocol unless both support preempt/resume. The local system then selects the lesser of (a) the largest low-priority data packet it can send and (b) the largest low-priority data packet the remote system can receive. Use of prompt/resume is initiated by the local system only where a packet of the selected size would be delayed in reaching the remote system by more than a predetermined interval.
摘要:
The process for determining the best communication route from a source end station to a destination end station is distributed over both source and destination network nodes. Network nodes, at the interface between a wide area network (WAN) and each subnetwork, contain access agents to control the communication flow between the wide area network and an end station in the subnetwork. The task of selecting the best route between two end stations is distributed between the access agents at the WAN interface in the first subnetwork, and the access agents at the WAN interface in the second subnetwork. Each access agent at one WAN interface obtains the best route from itself to the end station in its subnetwork. Each access agent at the other WAN interface finds the best route from each access agent at the first WAN interface through itself to the end station in its subnetwork. One designated access agent collects all the best route information. This best route information is concatenated, and the route with the least weight is selected as the best route between end stations.
摘要:
Each node in a multinode communication system is provided with programming to act as a Set Manager for a given set of nodes and users. Functions of the Set Manager include operation processes for creating distribution trees for efficient multicast and bandwidth reservation tasks. Because set membership is not necessarily fixed or accurate at the time the distribution tree is created, the Tree Leader task that creates and maintains the trees needs accurate and updated information showing the number of users at the nodes it serves which are participating in the distribution tree. The count of active users at nodes served by the Tree Leader is provided in response to an indicia established at the time the Tree Leader sets up the tree. Each Set Manager at a given node monitors for changes in set membership and link failure and notifies the requesting Tree Leaders for each tree in which it participates whenever changes in the number of users either by joining or leaving the set or link failures occur by direct communication between the Set Managers and the Tree Leaders without requiring intervention of other elements in the system.
摘要:
A telecommunications system. The system includes a first area. The system includes a second area connected to the first area to form a single physical network for routing connections and in which there is selective propagation of information between each area in the network. A split switch. The split switch includes a first node adapted to be disposed in a first area. The split switch includes a second node adapted to be disposed in a second area. The second node is in communication with the first node. The first node prevents information from propagating into the first area from the second area which was provided to the second area from the first area or arose from the first area. A method for routing connections. The method includes the steps of propagating information concerning a connection from a first area of a physical network to a second area of the physical area. Then there is the step of preventing the information from forming a routing loop back to the first area.