摘要:
A turbomachine includes a turbine section including a turbine inlet. A transition piece includes a transition piece inlet and a transition piece outlet. A ceramic matrix composite (CMC) bridge member links the transition piece outlet and the turbine inlet.
摘要:
A turbomachine includes a turbine section including a turbine inlet. A transition piece includes a transition piece inlet and a transition piece outlet. A ceramic matrix composite (CMC) bridge member links the transition piece outlet and the turbine inlet.
摘要:
Embodiments of the present invention provide a S-EGR process that yields an exhaust stream that includes a relatively high concentration of a desirable gas and is also substantially oxygen-free. This desirable gas includes, but is not limited to: Carbon Dioxide (CO2), Nitrogen (N2), or Argon.
摘要:
A turbine bucket may generally include an airfoil formed from a metal-based material. The airfoil may include a base and a tip disposed opposite the base. The airfoil may also include a pressure side wall and a suction side wall extending between a leading edge and a trailing edge. Additionally, the turbine bucket may include a tip cap disposed between the pressure side wall and the suction side wall. The tip cap may be formed from a ceramic matrix composite material.
摘要:
The present invention provides a system and method of operating a combined-cycle powerplant at part-load without shutting down an HRSG and steam turbine. The present invention may apply to a powerplant operating in an open-cycle mode. The present invention may also apply to a powerplant operating in a closed-cycle mode.
摘要:
The present invention provides a system and method that yields an exhaust stream that includes a relatively high concentration of a desirable gas and is also substantially oxygen-free. This desirable gas includes, but is not limited to: Carbon Dioxide (CO2), Nitrogen (N2), or Argon. The present invention also provides a way to control the physical property of the exhaust stream.
摘要:
A turbine bucket may generally include an airfoil formed from a metal-based material. The airfoil may include a base and a tip disposed opposite the base. The airfoil may also include a pressure side wall and a suction side wall extending between a leading edge and a trailing edge. Additionally, the turbine bucket may include a tip cap disposed between the pressure side wall and the suction side wall. The tip cap may be formed from a ceramic matrix composite material.
摘要:
An airfoil is provided and includes an airfoil body having a pressure surface extendable between radial ends and a fluid path in an airfoil interior defined therein. The pressure surface is formed to further define a passage by which coolant is deliverable from the fluid path in the airfoil interior, in a perimetric direction from the pressure surface for the purpose of cooling a portion on the surface of the radial end.
摘要:
A method and apparatus for a rotor assembly for gas turbine engine are provided. A first rotor blade including an airfoil, a platform, a shank, an internal cavity, and a dovetail is provided, wherein the airfoil extends radially outward from the platform, which includes a radially outer surface and a radially inner surface, the shank extends radially inward from the platform, and the dovetail extends from the shank, such that the internal cavity is defined by the airfoil, the platform, the shank, and the dovetail. The first rotor blade is coupled to a rotor shaft such that during engine operation, cooling air is channeled from the cavity through an impingement cooling circuit for impingement cooling the first rotor blade platform radially inner surface, and a second rotor blade is coupled to the rotor shaft such that a platform gap is defined between the first and second rotor blade platforms.
摘要:
A method facilitates assembling a rotor assembly for gas turbine engine. The method comprises providing a first rotor blade that includes an airfoil having a leading edge and a trailing edge including a plurality of trailing edge openings, a platform, a shank, and a dovetail, wherein the platform extends between the airfoil and the dovetail and includes a radially outer surface, a radially inner surface, and a recessed area extending at least partially between the radially outer and inner surfaces. The method also comprises coupling the first rotor blade to a rotor shaft using the dovetail, and coupling a second rotor blade to the rotor shaft such that cooling air is substantially continuously channeled through the platform recessed area during engine operation to facilitate reducing stresses induced to at least a portion of the airfoil trailing edge.