摘要:
Systems, methods, and other embodiments associated with controlling a magnetic resonance imaging (MRI) apparatus to perform a balanced steady state free precession (bSSFP) technique that includes magnetization preparation with differentiated velocity encoding and spoiling residual transverse magnetization are described. The example systems, methods, and other embodiments are also associated with acquiring a dark blood image in response to the bSSFP technique. A dark blood image is one in which NMR signal acquired from an object subjected to the bSSFP technique and magnetization preparation includes NMR signal from flowing spins and NMR signal from non-flowing spins in a desired ratio.
摘要:
Systems, methods, and other embodiments associated with tracking an ablative device and monitoring an ablation produced by the ablative device are described. One example method includes acquiring a magnetic resonance (MR) image of an ablative device inserted in a body and selectively controlling positioning of the ablative device based, at least in part on the MR image. The MR image may be continuously provided in real-time by an interventional MR imaging apparatus programmed to image using a tri-orthogonal plane sequence. The method may also include acquiring an MR image of an ablation performed by the ablative device, and selectively controlling the ablative device based, at least in part, on the MR image. The MR image may also be provided by the IMRI apparatus operating according to a tri-orthogonal plane sequence. In one example, the ablation may treat hypopharyngeal obstructive sleep apnea by reducing tongue base volume.
摘要:
Systems, methods, and other embodiments associated with controlling a magnetic resonance imaging (MRI) apparatus to perform a balanced steady state free precession (bSSFP) technique that includes magnetization preparation with differentiated velocity encoding and spoiling residual transverse magnetization are described. The example systems, methods, and other embodiments are also associated with acquiring a dark blood image in response to the bSSFP technique. A dark blood image is one in which NMR signal acquired from an object subjected to the bSSFP technique and magnetization preparation includes NMR signal from flowing spins and NMR signal from non-flowing spins in a desired ratio.
摘要:
Systems methods, and other embodiments associated with acquiring intersecting TrueFISP images using grouped reverse centric phase encoding are described. One example method includes controlling an MRI apparatus to produce a TrueFISP sequence that delays acquisition of the center of k-space to reduce saturation banding artifacts. The example method also includes controlling the MRI apparatus to produce a TrueFISP sequence that reduces eddy current artifacts by grouping (e.g., pairing) lines in k-space. The method concludes by acquiring NMR signal in response to the TrueFISP sequence.
摘要:
The present invention is directed to methods for chemical species signal suppression in magnetic resonance imaging procedures, wherein Dixon techniques are enhanced by continuously sampling techniques. In the invention, k-space data is acquired during the entire period of read gradient associated with a gradient echo pulse acquisition scheme. The invention utilizes a total sampling time (TST) acquisition during the entire read gradient, using three echoes of a TST data set to achieve chemical species separation in both homogenous fields as well as areas of field inhomogeneity. As an example, a continuously sampled rectilinearly FLASH pulse sequence is modified such that the time between echoes was configured to be 2.2 milliseconds, with TE selected to allow 180° phase variation in the fat magnetization between each of the three TE's (TE1, TE2, and TE3). Data collected during the dephase and rephase gradient lobes are defined as a first Dixon acquisition, with data collected by the read gradient lobe being defined as a second Dixon acquisition. Two point Dixon reconstruction techniques are used to form images for each chemical species, such as for generating water and fat images of the scanned object region. Other corrections, such as off-resonance correction may be applied on the image data.
摘要:
A method and system for improving image quality by correcting errors introduced by rotational motion of an object being imaged is provided. The object is associated with a fiducial mark. The method provides a computer executable methodology for detecting a rotation and selectively reordering, deleting and/or reacquiring projection data.
摘要:
Systems, methodologies, media, and other embodiments associated with automatically adapting MRI controlling parameters are described. One exemplary method embodiment includes configuring an MRI apparatus to acquire MR signal data using a non-rectilinear trajectory. The example method may also include acquiring MR signals, transforming the MR signals into image data, and selectively adapting the MRI controlling parameters based, at least in part, on information associated with the MR signals.