Abstract:
A data output circuit of a semiconductor memory apparatus includes: a data control driver configured to drive rising data and falling data to output control rising data and control falling data or drive level data to output the control rising data and the control falling data, in response to an output level test signal; a DLL clock control unit configured to drive a rising clock and a falling clock to output a control rising clock and a control falling clock in response to an enable signal and the output level test signal; and a clock synchronization unit configured to synchronize the control rising data and the control falling data with the control rising clock and the control falling clock to output serial rising data and serial falling data.
Abstract:
A method of testing a semiconductor memory apparatus is provided. The data alignment units other than the one data align unit being tested are deactivated. Serial data is input to the activated data alignment unit to generate parallel data. The parallel data is decoded. A test mode signal corresponding to the decoded result is enabled to perform the test. Different serial data is input where the test mode signal is enabled to generate and decode parallel data. Both tests are then performed simultaneously based on a test mode signal corresponding to a result of the decoded parallel data.
Abstract:
An integrated circuit includes: a reference voltage generation unit configured to be driven in response to an enable signal, select one of a plurality of reference voltages generated by dividing a power supply voltage as an input reference voltage, and output the input reference voltage; and a reference voltage level compensation unit configured to be driven in response to the enable signal and change a level of the input reference voltage by an amount of change in a level of an external voltage.
Abstract:
A method for conducting reference voltage training includes setting levels of a reference voltage in response to code signals and receiving and storing data for the respective levels of the reference voltage, and simultaneously outputting the stored data.
Abstract:
A semiconductor apparatus includes a comparison voltage generation unit configured to generate a plurality of different comparison voltages, a reference voltage generation unit configured to receive a generation code from an external system, select one of the plurality of the different comparison voltages according to the generation code, and generate a reference voltage, and a reference voltage determination unit configured to receive the generation code and an expected reference voltage from the external system, check whether a level of the expected reference voltage is in a target range, and output a check result to the external system.
Abstract:
A semiconductor system includes a controller configured to apply code signals for setting levels of a reference voltage and data, and to receive output data. The semiconductor system also includes a semiconductor device configured to receive the data for the respective levels of the reference voltage set according to the code signals, to compare the reference voltages with the data to generate new data, to store the new data as internal data, and to process the stored internal data to output as the output data.
Abstract:
An integrated circuit includes a reference voltage level setting circuit and a reference voltage generation circuit. The reference voltage level setting circuit is configured to set a level of an input reference voltage to a preset level in a power-up period or a self-refresh mode. The reference voltage generation circuit is configured to select one of a plurality of reference voltages and output the selected reference voltage as the input reference voltage when the power-up period is ended and an operation mode is not in the self-refresh mode.