摘要:
The present invention provides substrates and apparatuses for efficient, rapid and specific capture, and optimal recovery, of nucleic acids, as well as methods of their use. The substrate is porous in nature and has a capture polynucleotide capable of hybridizing to a target nucleic acid immobilized thereon. Upon flowing a sample containing or suspected of containing the target nucleic acid through the porous substrate, the target nucleic acid is rapidly captured. Following capture, the target nucleic acid can be efficiently recovered for subsequent use.
摘要:
Intermediates and methods for forming activated metal complexes bound to surfaces on oxide layers, immobilizing beads to the modified surface and articles produced thereby are described. Hydroxyl groups on the oxide surfaces are reacted with a metal reagent complex of the formula Y(L-Pol)m, where Y is a transition metal, magnesium or aluminum, L is oxygen, sulfur, selenium or an amine, and “Pol” represents a passivating agent such as a methoxyethanol, a polyethylene glycol, a hydrocarbon, or a fluorocarbon. The resulting modified surface can be further reacted with a passivating agent having a phosphate functional group or a plurality of functional groups that are reactive with or that form complexes with Y. The metal oxide surfaces exhibit minimal binding to bio-molecules, exhibit uniform deposition and immobilization of beads at high density, can be subsequently modified to create surfaces having a variety of properties, and can be used for nucleic acid sequencing and other analyses and in single-molecule detection schemes.
摘要:
Intermediates and methods for forming activated metal complexes bound to surfaces on oxide layers, immobilizing beads to the modified surface and articles produced thereby are described. Hydroxyl groups on the oxide surfaces are reacted with a metal reagent complex of the formula Y(L-Pol)m, where Y is a transition metal, magnesium or aluminum, L is oxygen, sulfur, selenium or an amine, and “Pol” represents a passivating agent such as a methoxyethanol, a polyethylene glycol, a hydrocarbon, or a fluorocarbon. The resulting modified surface can be further reacted with a passivating agent having a phosphate functional group or a plurality of functional groups that are reactive with or that form complexes with Y. The metal oxide surfaces exhibit minimal binding to bio-molecules, exhibit uniform deposition and immobilization of beads at high density, can be subsequently modified to create surfaces having a variety of properties, and can be used for nucleic acid sequencing and other analyses and in single-molecule detection schemes.