摘要:
The present invention provides for the preparation of an “optimized” VPO4 phase or V—P—O/C precursor. The VPO4 precursor is an amorphous or nanocrystalline powder. The V—P—O/C precursor is amorphous in nature and contains finely divided and dispersed carbon. Throughout the specification it is understood that the VPO4 precursor and the V—P—O/C precursor materials can be used interchangeably to produce the final vanadium phosphates, with the V—P—O/C precursor material being the preferred precursor. The precursors can subsequently be used to make vanadium based electroactive materials and use of such precursor materials offers significant advantages over other processes known for preparing vanadium phosphate compounds.
摘要:
The invention provides a novel polyanion-based electrode active material for use in a secondary or rechargeable electrochemical cell having a first electrode, a second electrode and an electrolyte.
摘要:
The present invention provides for the preparation of an “optimized” VPO4 phase or V—P—O/C precursor. The VPO4 precursor is an amorphous or nanocrystalline powder. The V—P—O/C precursor is amorphous in nature and contains finely divided and dispersed carbon. Throughout the specification it is understood that the VPO4 precursor and the V—P—O/C precursor materials can be used interchangeably to produce the final vanadium phosphates, with the V—P—O/C precursor material being the preferred precursor. The precursors can subsequently be used to make vanadium based electroactive materials and use of such precursor materials offers significant advantages over other processes known for preparing vanadium phosphate compounds.
摘要:
The present invention provides for the preparation of an “optimized” VPO4 phase or V—P—O/C precursor. The VPO4 precursor is an amorphous or nanocrystalline powder. The V—P—O/C precursor is amorphous in nature and contains finely divided and dispersed carbon. Throughout the specification it is understood that the VPO4 precursor and the V—P—O/C precursor materials can be used interchangeably to produce the final vanadium phosphates, with the V—P—O/C precursor material being the preferred precursor. The precursors can subsequently be used to make vanadium based electroactive materials and use of such precursor materials offers significant advantages over other processes known for preparing vanadium phosphate compounds.
摘要:
The invention provides an electrochemical cell having a first electrode having an electrode active material containing at least one electrode active material charge-carrier, a second electrode, and an electrolyte containing at least one electrolyte charge-carrier. In the electrochemical cell's nascent state, the at least one electrolyte charge carrier differs from the at least one electrode active material charge-carrier.
摘要:
The invention provides an electrochemical cell having a first electrode having an electrode active material containing at least one electrode active material charge-carrier, a second electrode, and an electrolyte containing at least one electrolyte charge-carrier. In the electrochemical cell's nascent state, the at least one electrolyte charge carrier differs from the at least one electrode active material charge-carrier.
摘要:
The invention provides a novel polyanion-based electrode active material for use in a secondary or rechargeable electrochemical cell having a first electrode, a second electrode and an electrolyte.
摘要:
Blisters or air bubbles between battery layers can be a problem with the lamination of battery layers. The blistering can be reduced by a two-step pressure-applying method. In the first step, a relatively small first pressure is applied to the battery layers. The relatively small first pressure is done such that air bubbles between the battery layers are not formed. Next, a second larger pressure is applied to the battery layers to laminate the battery layers together. In an alternate embodiment, the pressure applied to the battery layers is changed from a low pressure to laminating pressures in one step.
摘要:
A battery package assembly comprises a package having an interior volume sealingly containing at least one electrochemical cell therein, and opposite polarity electrical connectors adapted to connect said at least one electrochemical cell to an external load. At least one of the opposite polarity electrical connectors is adapted to automatically shut down the battery in response to a sufficient increase in internal pressure within the battery package.