摘要:
A flash-based strategy is used to separate foreground information from background information within image information. In this strategy, a first image is taken without the use of flash. A second image is taken of the same subject matter with the use of flash. The foreground information in the flash image is illuminated by the flash to a much greater extent than the background information. Based on this property, the strategy applies processing to extract the foreground information from the background information. The strategy supplements the flash information by also taking into consideration motion information and color information.
摘要:
A flash-based strategy is used to separate foreground information from background information within image information. In this strategy, a first image is taken without the use of flash. A second image is taken of the same subject matter with the use of flash. The foreground information in the flash image is illuminated by the flash to a much greater extent than the background information. Based on this property, the strategy applies processing to extract the foreground information from the background information. The strategy supplements the flash information by also taking into consideration motion information and color information.
摘要:
Methods for detecting a salient object in an input image are described. For this, the salient object in an image may be defined using a set of local, regional, and global features including multi-scale contrast, center-surround histogram, and color spatial distribution. These features are optimally combined through conditional random field learning. The learned conditional random field is then used to locate the salient object in the image. The methods can also use image segmentation, where the salient object is separated from the image background.
摘要:
The present video tracking technique outputs a Maximum A Posterior (MAP) solution for a target object based on two object templates obtained from a start and an end keyframe of a whole state sequence. The technique first minimizes the whole state space of the sequence by generating a sparse set of local two-dimensional modes in each frame of the sequence. The two-dimensional modes are converted into three-dimensional points within a three-dimensional volume. The three-dimensional points are clustered using a spectral clustering technique where each cluster corresponds to a possible trajectory segment of the target object. If there is occlusion in the sequence, occlusion segments are generated so that an optimal trajectory of the target object can be obtained.
摘要:
Methods for detecting a salient object in an input image are described. For this, the salient object in an image may be defined using a set of local, regional, and global features including multi-scale contrast, center-surround histogram, and color spatial distribution. These features are optimally combined through conditional random field learning. The learned conditional random field is then used to locate the salient object in the image. The methods can also use image segmentation, where the salient object is separated from the image background.
摘要:
Exemplary systems and methods segment a foreground from a background image in a video sequence. In one implementation, a system refines a segmentation boundary between the foreground and the background image by attenuating background contrast while preserving contrast of the segmentation boundary itself, providing an accurate background cut of live video in real time. A substitute background may then be merged with the segmented foreground within the live video. The system can apply an adaptive background color mixture model to improve segmentation of foreground from background under various background changes, such as camera movement, illumination change, and movement of small objects in the background.
摘要:
Systems and methods provide picture collage systems and methods. In one implementation, a system determines a salient region in each of multiple images and develops a Bayesian model to maximize visibility of the salient regions in a collage that overlaps the images. The Bayesian model can also minimize blank spaces in the collage and normalize the percentage of each salient region that can be visibly displayed in the collage. Images are placed with diversified rotational orientation to provide a natural artistic collage appearance. A Markov Chain Monte Carlo technique is applied to the parameters of the Bayesian model to obtain image placement, orientation, and layering. The MCMC technique can combine optimization proposals that include local, global, and pairwise samplings from a distribution of state variables.
摘要:
Digital video effects are described. In one aspect, a foreground object in a video stream is identified. The video stream comprises multiple image frames. The foreground object is modified by rendering a 3-dimensional (3-D) visual feature over the foreground object for presentation to a user in a modified video stream. Pose of the foreground object is tracked in 3-D space across respective ones of the image frames to identify when the foreground object changes position in respective ones of the image frames. Based on this pose tracking, aspect ratio of the 3-D visual feature is adaptively modified and rendered over the foreground object in corresponding image frames for presentation to the user in the modified video stream.
摘要:
Digital video effects are described. In one aspect, a foreground object in a video stream is identified. The video stream comprises multiple image frames. The foreground object is modified by rendering a 3-dimensional (3-D) visual feature over the foreground object for presentation to a user in a modified video stream. Pose of the foreground object is tracked in 3-D space across respective ones of the image frames to identify when the foreground object changes position in respective ones of the image frames. Based on this pose tracking, aspect ratio of the 3-D visual feature is adaptively modified and rendered over the foreground object in corresponding image frames for presentation to the user in the modified video stream.
摘要:
The present video tracking technique outputs a Maximum A Posterior (MAP) solution for a target object based on two object templates obtained from a start and an end keyframe of a whole state sequence. The technique first minimizes the whole state space of the sequence by generating a sparse set of local two-dimensional modes in each frame of the sequence. The two-dimensional modes are converted into three-dimensional points within a three-dimensional volume. The three-dimensional points are clustered using a spectral clustering technique where each cluster corresponds to a possible trajectory segment of the target object. If there is occlusion in the sequence, occlusion segments are generated so that an optimal trajectory of the target object can be obtained.