-
公开(公告)号:US09519682B1
公开(公告)日:2016-12-13
申请号:US13117037
申请日:2011-05-26
申请人: Jay Pujara , Vishwanath Tumkur Ramarao , Xiaopeng Xi , Martin Zinkevich , Anirban Dasgupta , Belle Tseng , Wei Chu , Jyh-Shin Gareth Shue
发明人: Jay Pujara , Vishwanath Tumkur Ramarao , Xiaopeng Xi , Martin Zinkevich , Anirban Dasgupta , Belle Tseng , Wei Chu , Jyh-Shin Gareth Shue
CPC分类号: G06F17/3053 , G06Q10/10 , H04H20/28 , H04H60/82
摘要: Embodiments are directed towards generating a unified user account trustworthiness system through user account trustworthiness scores. A trusted group of user accounts may be identified for a given action by grouping a plurality of user accounts into tiers based on a trustworthiness score of each user account for the given action. The tiers and/or trustworthiness scores may be employed to classify an item, such as a message as spam or non-spam, based on input from the user accounts. The trustworthiness scores may also be employed to determine if a user account is a robot account or a human account. The trusted group for a given action may dynamically evolve over time by regrouping the user accounts based on modified trustworthiness scores. A trustworthiness score of an individual user account may be modified based on input received from the individual user account and input from other user accounts.
摘要翻译: 实施例旨在通过用户帐户可信度得分来生成统一的用户帐户可信赖性系统。 可以基于针对给定动作的每个用户帐户的可信度分数将多个用户帐户分组成层,可以为给定动作识别可信赖的用户帐户组。 层级和/或可信赖性分数可以用于基于来自用户帐户的输入来将项目(诸如作为垃圾邮件或非垃圾邮件)的消息分类。 还可以使用可信度分数来确定用户帐户是机器人帐户还是人类账户。 给定动作的受信任组可以通过基于修改的可信度得分重新分组用户账户而随着时间的推移而动态演变。 可以基于从单个用户帐户接收的输入和来自其他用户帐户的输入来修改个人用户帐户的可信度分数。
-
公开(公告)号:US09442881B1
公开(公告)日:2016-09-13
申请号:US13222720
申请日:2011-08-31
申请人: Sharat Narayan , Vishwanath Tumkur Ramarao , Belle Tseng , Markus Weimer , Young Maeng , Jyh-Shin Shue
发明人: Sharat Narayan , Vishwanath Tumkur Ramarao , Belle Tseng , Markus Weimer , Young Maeng , Jyh-Shin Shue
IPC分类号: G06F15/16
CPC分类号: H04L51/12 , G06F15/16 , G06Q10/107 , H04L51/046 , H04L61/2007 , H04L67/2866
摘要: Embodiments are directed towards multi-level entity classification. An object associated with an entity is received. In one embodiment the object comprises and email and the entity comprises the IP address of a sending email server. If the entity has already been classified, as indicated by an entity classification cache, then a corresponding action is taken on the object. However, if the entity has not been classified, the entity is submitted to a fast classifier for classification. A feature collector concurrently fetches available features, including fast features and full features. The fast classifier classifies the entity based on the fast features, storing the result in the entity classification cache. Subsequent objects associated with the entity are processed based on the cached result of the fast classifier. Then, a full classifier classifies the entity based on at least the full features, storing the result in the entity classification cache.
摘要翻译: 实施例针对多级实体分类。 接收与实体相关联的对象。 在一个实施例中,对象包括和电子邮件,并且实体包括发送电子邮件服务器的IP地址。 如果实体已经被分类,如实体分类缓存所示,则对对象采取相应的动作。 但是,如果实体尚未分类,则将实体提交给快速分类器进行分类。 功能收集器同时提取可用功能,包括快速功能和完整功能。 快速分类器基于快速特征对实体进行分类,将结果存储在实体分类缓存中。 基于快速分类器的缓存结果处理与实体相关联的后续对象。 然后,完整分类器至少基于全部特征对实体进行分类,将结果存储在实体分类缓存中。
-
公开(公告)号:US20130111005A1
公开(公告)日:2013-05-02
申请号:US13282285
申请日:2011-10-26
申请人: Wei Chu , Martin Zinkevich , Lihong Li , Achint Oommen Thomas , Belle Tseng
发明人: Wei Chu , Martin Zinkevich , Lihong Li , Achint Oommen Thomas , Belle Tseng
摘要: Software for online active learning receives content posted to an online stream at a website. The software converts the content into an elemental representation and inputs the elemental representation into a probit model to obtain a predictive probability that the content is abusive. The software also calculates an importance weight based on the elemental representation. And the software updates the probit model using the content, the importance weight, and an acquired label if a condition is met. The condition depends on an instrumental distribution. The software removes the content from the online stream if a condition is met. The condition depends on the predictive probability, if an acquired label is unavailable.
摘要翻译: 用于在线主动学习的软件会收到发布到网站上的在线流的内容。 软件将内容转换为元素表示,并将元素表示输入到概率模型中,以获得内容滥用的预测概率。 该软件还基于元素表示计算重要性权重。 并且如果满足条件,则软件使用内容,重要性权重以及获取的标签来更新概率模型。 条件取决于工具分配。 如果满足条件,该软件将从在线流中删除内容。 如果获取的标签不可用,则条件取决于预测概率。
-
公开(公告)号:US09967218B2
公开(公告)日:2018-05-08
申请号:US13282285
申请日:2011-10-26
申请人: Wei Chu , Martin Zinkevich , Lihong Li , Achint Oommen Thomas , Belle Tseng
发明人: Wei Chu , Martin Zinkevich , Lihong Li , Achint Oommen Thomas , Belle Tseng
摘要: Software for online active learning receives content posted to an online stream at a website. The software converts the content into an elemental representation and inputs the elemental representation into a probit model to obtain a predictive probability that the content is abusive. The software also calculates an importance weight based on the elemental representation. And the software updates the probit model using the content, the importance weight, and an acquired label if a condition is met. The condition depends on an instrumental distribution. The software removes the content from the online stream if a condition is met. The condition depends on the predictive probability, if an acquired label is unavailable.
-
公开(公告)号:US08955044B2
公开(公告)日:2015-02-10
申请号:US12897615
申请日:2010-10-04
申请人: Kunal Punera , Shanmugasundaram Ravikumar , Anirban Dasgupta , Belle Tseng , Hung-Kuo (James) Chu
发明人: Kunal Punera , Shanmugasundaram Ravikumar , Anirban Dasgupta , Belle Tseng , Hung-Kuo (James) Chu
CPC分类号: H04L9/3271
摘要: A method of generating a time managed challenge-response test is presented. The method identifies a geometric shape having a volume and generates an entry object of the time managed challenge-response test. The entry object is overlaid onto the geometric shape, such that the entry object is distributed over a surface of the geometric shape, and a portion of the entry object is hidden at any point in time. The geometric shape is rotated, which reveals the portion of the entry object that is hidden. A display region on a display is identified for rendering the geometric shape and the geometric shape is presented in the display region of the display.
摘要翻译: 提出了一种生成时间管理的挑战 - 响应测试的方法。 该方法识别具有卷的几何形状并生成时间管理的挑战 - 响应测试的条目对象。 入口对象覆盖在几何形状上,使得入口对象分布在几何形状的表面上,并且入口对象的一部分在任何时间点被隐藏。 几何形状被旋转,这显示了隐藏的条目对象的部分。 识别显示器上的显示区域以呈现几何形状,并且在显示器的显示区域中呈现几何形状。
-
公开(公告)号:US20120166379A1
公开(公告)日:2012-06-28
申请号:US12978186
申请日:2010-12-23
IPC分类号: G06N5/02
CPC分类号: G06N99/005 , G06N7/005
摘要: Embodiments are directed towards clustering cookies for identifying unique mobile devices for associating activities over a network with a given mobile device. The cookies are clustered based on a Bayes Factor similarity model that is trained from cookie features of known mobile devices. The clusters may be used to determine the number of unique mobile devices that access a website. The clusters may also be used to provide targeted content to each unique mobile device.
摘要翻译: 实施例针对用于识别用于将网络上的活动与给定移动设备相关联的唯一移动设备的聚类cookie。 基于由已知移动设备的cookie特征训练的贝叶斯因子相似性模型,cookie是聚类的。 群集可用于确定访问网站的唯一移动设备的数量。 集群也可以用于向每个唯一移动设备提供有针对性的内容。
-
公开(公告)号:US08396822B2
公开(公告)日:2013-03-12
申请号:US12978186
申请日:2010-12-23
IPC分类号: G06N5/02
CPC分类号: G06N99/005 , G06N7/005
摘要: Embodiments are directed towards clustering cookies for identifying unique mobile devices for associating activities over a network with a given mobile device. The cookies are clustered based on a Bayes Factor similarity model that is trained from cookie features of known mobile devices. The clusters may be used to determine the number of unique mobile devices that access a website. The clusters may also be used to provide targeted content to each unique mobile device.
-
公开(公告)号:US20120084832A1
公开(公告)日:2012-04-05
申请号:US12897615
申请日:2010-10-04
申请人: Kunal Punera , Shanmugasundaram Ravikumar , Anirban Dasgupta , Belle Tseng , Hung-Kuo (James) Chu
发明人: Kunal Punera , Shanmugasundaram Ravikumar , Anirban Dasgupta , Belle Tseng , Hung-Kuo (James) Chu
CPC分类号: H04L9/3271
摘要: A method of generating a time managed challenge-response test is presented. The method identifies a geometric shape having a volume and generates an entry object of the time managed challenge-response test. The entry object is overlaid onto the geometric shape, such that the entry object is distributed over a surface of the geometric shape, and a portion of the entry object is hidden at any point in time. The geometric shape is rotated, which reveals the portion of the entry object that is hidden. A display region on a display is identified for rendering the geometric shape and the geometric shape is presented in the display region of the display.
摘要翻译: 提出了一种生成时间管理的挑战 - 响应测试的方法。 该方法识别具有卷的几何形状并生成时间管理的挑战 - 响应测试的条目对象。 入口对象覆盖在几何形状上,使得入口对象分布在几何形状的表面上,并且入口对象的一部分在任何时间点被隐藏。 几何形状被旋转,这显示了隐藏的条目对象的部分。 识别显示器上的显示区域以呈现几何形状,并且在显示器的显示区域中呈现几何形状。
-
公开(公告)号:US20130148880A1
公开(公告)日:2013-06-13
申请号:US13315066
申请日:2011-12-08
申请人: Lyndon Kennedy , Roelof van Zwol , Nicolas Torzec , Belle Tseng
发明人: Lyndon Kennedy , Roelof van Zwol , Nicolas Torzec , Belle Tseng
IPC分类号: G06K9/62
CPC分类号: G06K9/00711 , G06K9/00228 , G06K9/46 , G06K9/4671 , G06K9/52 , G06K9/62 , G06K9/6201 , G06K2009/4666 , G06T3/40 , G06T11/60
摘要: Software for supervised learning extracts a set of pixel-level features from each source image in collection of source images. Each of the source images is associated with a thumbnail created by an editor. The software also generates a collection of unique bounding boxes for each source image. And the software calculates a set of region-level features for each bounding box. Each region-level feature results from the aggregation of pixel values for one of the pixel-level features. The software learns a regression model, using the calculated region-level features and the thumbnail associated with the source image. Then the software chooses a thumbnail from a collection of unique bounding boxes in a new image, based on application of the regression model.
摘要翻译: 用于监督学习的软件在收集源图像时从每个源图像中提取一组像素级特征。 每个源图像与由编辑器创建的缩略图相关联。 该软件还为每个源图像生成一组独特的边界框。 并且软件为每个边界框计算一组区域级别的功能。 每个区域级别的特征来自于像素级特征之一的像素值的聚合。 该软件学习回归模型,使用计算的区域级功能和与源图像相关联的缩略图。 然后,软件根据回归模型的应用,从新图像中的独特边界框的集合中选择一个缩略图。
-
公开(公告)号:US20130097005A1
公开(公告)日:2013-04-18
申请号:US13271935
申请日:2011-10-12
申请人: Jie Yang , Liang Zhang , Belle Tseng
发明人: Jie Yang , Liang Zhang , Belle Tseng
IPC分类号: G06Q30/02
CPC分类号: G06Q30/0207 , G06Q30/0605
摘要: Techniques for providing group discounts are described. A group discount package is configured by associating a plurality of different items with the package, associating a discount price with each item, and associating a threshold value with at least one item. One or more actions that have corresponding threshold values may also be associated with the package. The group discount package may be offered by enabling users to request to purchase items associated with the package. Each user may request to purchase one or more of the items associated with the package at the associated discount price. Furthermore, the users may be enabled to perform any actions associated with the package. A deal with the package is confirmed when each associated threshold value is met.
摘要翻译: 描述了提供组折扣的技术。 组合折扣包通过将多个不同的项目与包裹相关联,将折扣价格与每个项目相关联,以及将阈值与至少一个项目相关联来配置。 具有相应阈值的一个或多个动作也可以与包相关联。 可以通过使用户能够请求购买与包相关的商品来提供组折扣包。 每个用户可以请求以相关联的折扣价格购买与包裹相关联的一个或多个物品。 此外,可以使用户能够执行与包相关联的任何动作。 当满足每个相关联的阈值时,确认包裹的处理。
-
-
-
-
-
-
-
-
-