摘要:
Embodiments relate to rotary drill bits that employ superabrasive cutting elements including a diamond-silicon carbide composite table. In an embodiment, a rotary drill bit includes a bit body configured to engage a subterranean formation. The bit body includes a plurality of blades. The rotary drill bit further includes a plurality of superabrasive cutting elements. Each of the superabrasive cutting elements is attached to a corresponding one of the cutting blades. At least one of the superabrasive cutting elements includes a substrate and a superabrasive table bonded to the substrate. The superabrasive table comprises diamond-silicon carbide composite including a matrix comprising nanometer-sized silicon carbide grains and micrometer-sized diamond grains dispersed through the matrix.
摘要:
Embodiments of the present invention relate to diamond-silicon carbide composites, superabrasive compacts including such diamond-silicon carbide composites, and methods of fabricating such diamond-silicon carbide composites and superabrasive compacts. In one embodiment, a superabrasive compact includes a substrate and a superabrasive table bonded to the substrate. The superabrasive table comprises diamond-silicon carbide composite including a matrix comprising nanometer-sized silicon carbide grains and micrometer-sized diamond grains dispersed through the matrix. In another embodiment, a method of fabricating a superabrasive compact is disclosed. An assembly comprising a mixture including diamond particles and silicon is formed. The silicon comprises amorphous silicon, crystalline silicon crystallized from amorphous silicon formed by a milling process, or combinations thereof. A substrate is positioned in proximity to the mixture. The assembly is subjected to heat and pressure to form a superabrasive compact comprising a superabrasive table bonded to the substrate. The superabrasive table comprises diamond-silicon carbide composite including diamond grains dispersed through a matrix of silicon carbide grains.
摘要:
Embodiments relate to superabrasive compacts including a diamond-silicon carbide composite table, and methods of fabricating such superabrasive compacts. In an embodiment, a method of fabricating a superabrasive compact is disclosed. An assembly comprising a mixture including diamond particles and silicon is formed. The silicon comprises amorphous silicon, crystalline silicon crystallized from amorphous silicon formed by a milling process, or combinations thereof. A substrate is positioned in proximity to the mixture. The assembly is subjected to a high-pressure/high-temperature process to form a superabrasive compact comprising a superabrasive table bonded to the substrate. The superabrasive table comprises diamond-silicon carbide composite including diamond grains dispersed through a matrix of silicon carbide grains.
摘要:
Embodiments relate to superabrasive compacts including a diamond-silicon carbide composite table, and methods of fabricating such superabrasive compacts. In an embodiment, a method of fabricating a superabrasive compact is disclosed. An assembly comprising a mixture including diamond particles and silicon is formed. The silicon comprises amorphous silicon, crystalline silicon crystallized from amorphous silicon formed by a milling process, or combinations thereof. A substrate is positioned in proximity to the mixture. The assembly is subjected to a high-pressure/high-temperature process to form a superabrasive compact comprising a superabrasive table bonded to the substrate. The superabrasive table comprises diamond-silicon carbide composite including diamond grains dispersed through a matrix of silicon carbide grains.
摘要:
Embodiments relate to rotary drill bits that employ superabrasive cutting elements including a diamond-silicon carbide composite table. In an embodiment, a rotary drill bit includes a bit body configured to engage a subterranean formation. The bit body includes a plurality of blades. The rotary drill bit further includes a plurality of superabrasive cutting elements. Each of the superabrasive cutting elements is attached to a corresponding one of the cutting blades. At least one of the superabrasive cutting elements includes a substrate and a superabrasive table bonded to the substrate. The superabrasive table comprises diamond-silicon carbide composite including a matrix comprising nanometer-sized silicon carbide grains and micrometer-sized diamond grains dispersed through the matrix.
摘要:
Embodiments of the present invention relate to diamond-silicon carbide composites, superabrasive compacts including such diamond-silicon carbide composites, and methods of fabricating such diamond-silicon carbide composites and superabrasive compacts. In one embodiment, a superabrasive compact includes a substrate and a superabrasive table bonded to the substrate. The superabrasive table comprises diamond-silicon carbide composite including a matrix comprising nanometer-sized silicon carbide grains and micrometer-sized diamond grains dispersed through the matrix. In another embodiment, a method of fabricating a superabrasive compact is disclosed. An assembly comprising a mixture including diamond particles and silicon is formed. The silicon comprises amorphous silicon, crystalline silicon crystallized from amorphous silicon formed by a milling process, or combinations thereof. A substrate is positioned in proximity to the mixture. The assembly is subjected to heat and pressure to form a superabrasive compact comprising a superabrasive table bonded to the substrate. The superabrasive table comprises diamond-silicon carbide composite including diamond grains dispersed through a matrix of silicon carbide grains.
摘要:
Embodiments relate to methods of fabricating PCD materials by subjecting a mixture that exhibits a broad diamond particle size distribution to an HPHT process, PCD materials so-formed, and PDCs including a polycrystalline diamond table comprising such PCD materials. In an embodiment, a PCD material includes a plurality of bonded diamond grains that exhibit a substantially unimodal diamond grain size distribution characterized, at least in part, by a parameter θ that is less than about 1.0. θ = x 6 · σ , where x is the average grain size of the substantially unimodal diamond grain size distribution, and σ is the standard deviation of the substantially unimodal diamond grain size distribution.
摘要翻译:实施方案涉及通过使表现出宽金刚石粒度分布的混合物经受HPHT方法,所形成的PCD材料和包括包含这种PCD材料的多晶金刚石台的PDC来制造PCD材料的方法。 在一个实施方案中,PCD材料包括多个结合的金刚石晶粒,其表现出基本上单峰金刚石晶粒尺寸分布,其至少部分地由参数和特征表征; 小于约1.0。 &thetas; = x 6·&sgr ,其中x是基本上单峰金刚石晶粒尺寸分布的平均晶粒尺寸, 是基本上单峰金刚石晶粒尺寸分布的标准偏差。
摘要:
Embodiments relate to methods of fabricating PCD materials by subjecting a mixture that exhibits a broad diamond particle size distribution to a HPHT process, PCD materials so-formed, and PDCs including a polycrystalline diamond table comprising such PCD materials. In an embodiment, a method includes subjecting a mixture to heat and pressure sufficient to form a PCD material. The mixture comprises a plurality of diamond particles exhibiting a diamond particle size distribution characterized, in part, by a parameter θ that is less than about 1.0, where θ = x 6 · σ , x is the average particle size of the diamond particle size distribution, and σ is the standard deviation of the diamond particle size distribution. In an embodiment, the diamond particle size distribution can be generally modeled by the following equation: C P F T 100 = D n - D S n D L n - D S n , wherein CPFT is the cumulative percent finer than, D is diamond grain size, DL is the largest-sized diamond grain, DS is the smallest-sized diamond grain, and n is a distribution modulus.
摘要翻译:实施方案涉及通过使表现出宽金刚石粒度分布的混合物经历HPHT方法,所形成的PCD材料以及包括包含这种PCD材料的多晶金刚石台的PDC来制造PCD材料的方法。 在一个实施方案中,一种方法包括使混合物经受足以形成PCD材料的热和压力。 该混合物包括多个金刚石颗粒,其表现出部分地由参数和等级表征的金刚石颗粒尺寸分布; 小于约1.0,其中&thetas; = x 6·&sgr ,x是金刚石粒度分布的平均粒度,&sgr; 是金刚石粒度分布的标准偏差。 在一个实施方案中,金刚石粒度分布通常可以通过以下等式建模:CéP Phop F笨T 100 = D n -DS n DL n-DS n,其中,CPFT是比 D是金刚石粒度,DL是最大尺寸的金刚石晶粒,DS是最小尺寸的金刚石晶粒,n是分布模量。
摘要:
Embodiments relate to methods of fabricating PCD materials by subjecting a mixture that exhibits a broad diamond particle size distribution to an HPHT process, PCD materials so-formed, and PDCs including a polycrystalline diamond table comprising such PCD materials. In an embodiment, a PCD material includes a plurality of bonded diamond grains that exhibit a substantially unimodal diamond grain size distribution characterized, at least in part, by a parameter θ that is less than about 1.0. θ = x 6 · σ , where x is the average grain size of the substantially unimodal diamond grain size distribution, and σ is the standard deviation of the substantially unimodal diamond grain size distribution.
摘要翻译:实施方案涉及通过使表现出宽金刚石粒度分布的混合物经受HPHT方法,所形成的PCD材料和包括包含这种PCD材料的多晶金刚石台的PDC来制造PCD材料的方法。 在一个实施方案中,PCD材料包括多个结合的金刚石晶粒,其表现出基本上单峰金刚石晶粒尺寸分布,其至少部分地由参数和特征表征; 小于约1.0。 &thetas; = x 6·&sgr ,其中x是基本上单峰金刚石晶粒尺寸分布的平均晶粒尺寸, 是基本上单峰金刚石晶粒尺寸分布的标准偏差。
摘要:
Embodiments relate to methods of fabricating PCD materials by subjecting a mixture that exhibits a broad diamond particle size distribution to a HPHT process, PCD materials so-formed, and PDCs including a polycrystalline diamond table comprising such PCD materials. In an embodiment, a method includes subjecting a mixture to heat and pressure sufficient to form a PCD material. The mixture comprises a plurality of diamond particles exhibiting a diamond particle size distribution characterized, in part, by a parameter θ that is less than about 1.0, where θ = x 6 · σ , x is the average particle size of the diamond particle size distribution, and σ is the standard deviation of the diamond particle size distribution. In an embodiment, the diamond particle size distribution can be generally modeled by the following equation: CPFT 100 = D n - D S n D L n - D S n , wherein CPFT is the cumulative percent finer than, D is diamond grain size, DL is the largest-sized diamond grain, DS is the smallest-sized diamond grain, and n is a distribution modulus.
摘要翻译:实施方案涉及通过使表现出宽金刚石粒度分布的混合物经历HPHT方法,所形成的PCD材料以及包括包含这种PCD材料的多晶金刚石台的PDC来制造PCD材料的方法。 在一个实施方案中,一种方法包括使混合物经受足以形成PCD材料的热和压力。 该混合物包括多个金刚石颗粒,其具有金刚石颗粒尺寸分布,其部分表征为参数θ小于约1.0,其中θ= x 6。 sigma,x是金刚石粒度分布的平均粒度,σ是金刚石粒度分布的标准偏差。 在一个实施方案中,金刚石粒度分布通常可以通过以下等式建模:CPFT 100 = D n -DS n DL n-DS n,其中CPFT是比D更精细的累积百分比,D是金刚石晶粒尺寸,DL是 最大尺寸的金刚石颗粒,DS是最小尺寸的金刚石颗粒,n是分布模量。