Abstract:
The invention relates to a binder, which contains water glass and further a phosphate or a borate or both. The invention further relates to a method for constructing molds and cores layer by layer, the molds and cores comprising a construction material mixture, which at least comprises a refractory molding base material, and the binder. In order to produce the molds and cores layer by layer in 3-D printing, the refractory molding base material is applied layer by layer and is selectively printed with the binder layer by layer, and consequently a body corresponding to the molds or cores is constructed and the molds or cores are released after the unbonded construction material mixture has been removed.
Abstract:
What are described are a process for producing an insulating product for the construction materials industry or an insulating material as intermediate for production of such a product, and a corresponding insulating material/insulating product. Also described are the use of a matrix encapsulation method for production of composite particles in the production of an insulating product for the construction materials industry or of an insulating material as intermediate for production of such a product, and the corresponding use of the composite particles producible by means of a matrix encapsulation method
Abstract:
Provided are thermally insulating materials comprising 1 to 95 wt % ceramic oxide, 1 to 30 wt % inorganic binding agent, and treated at a temperature of less than about 1000° C.; processes for producing the insulating materials; and uses thereof.
Abstract:
Various embodiments of the invention include an apparatus for forming an object. Various particular embodiments include an object forming apparatus including: at least two reservoirs for storing material components; a mixing device having an inlet and an outlet, the inlet of the mixing device being fluidly connected to the at least two reservoirs; and a die fluidly connected to the outlet of the mixing device, the die including an object manifold, wherein the mixing device and the die are a single unit detachable from the at least two reservoirs.
Abstract:
A castable refractory composition may include from 5% to 95% by weight of alumina, aluminosilicate, or mixtures thereof; from 0.5% to 1.5% by weight alkaline earth metal oxide and/or hydroxide, and 0.1% to 5% by weight of silica having a surface area of at least about 10 m2/g. The refractory composition may include no more than 0.5% by weight of cementitious binder. The refractory composition may release less than 25 cm3 of hydrogen gas per kilogram of castable refractory composition upon addition of water. The refractory compositions may set on addition of water.
Abstract:
Solar reflective roofing granules include a binder and inert mineral particles, with solar reflective particles dispersed in the binder. An agglomeration process preferentially disposes the solar reflective particles at a desired depth within or beneath the surface of the granules.
Abstract:
A honeycomb structure includes a tubular honeycomb structure body having porous partition walls to define and form a plurality of cells, and an outer peripheral wall; and a pair of electrode sections disposed on a side surface of the honeycomb structure body, an electrical resistivity of the honeycomb structure body is from 1 to 200 Ωcm, each of the pair of electrode sections is formed into a band shape extending in an extending direction of the cells, the electrode section is constituted of a porous body in which particles made of silicon carbide as an aggregate are bound by a binding material, silicon carbide as the aggregate constituting the electrode sections contains β-SiC having a stacking fault of 2% or less, and the binding material constituting the electrode sections contains silicon and a metal silicide.
Abstract:
Objects of the invention are to provide silicoaluminophosphate particles that have excellent NOx purification performance and can suppress water adsorption-caused contraction and water desorption-caused expansion and to provide a honeycomb structure that has excellent NOx purification performance and can suppress the breakage of the honeycomb unit due to the adsorption or desorption of water, a method for manufacturing the honeycomb structure, and an exhaust gas purifying apparatus including the honeycomb structure. The silicoaluminophosphate particles of the invention have a metallic oxide attached to silicoaluminophosphate particles with a ratio of an amount of Si to a sum of amounts of Al and P in a range of 0.16 to 0.33, in which a specific surface area is in a range of 250 m2/g to 450 m2/g, and an external surface area is in a range of 10 m2/g to 35 m2/g.
Abstract:
To provide a treatment device equipped with a catalyst-supporting honeycomb structure, the device being for use in, for example, an exhaust gas purification treatment, hydrogen production by ammonia decomposition or the like, and a method for producing the same. The catalyst-supporting honeycomb structure is produced by forming the inorganic binder-containing functional catalyst-supporting corrugated glass paper without removing an organic binder originally contained in the glass paper and by using the corrugated glass paper in combination with the inorganic binder-containing functional catalyst-supporting flat glass paper. In the treatment device equipped with a catalyst-supporting honeycomb structure, a corrugated glass paper having an inorganic binder-containing functional catalyst supported thereon and a flat glass paper having the same inorganic binder-containing functional catalyst supported thereon are alternately stacked to form the catalyst-supporting honeycomb structure, and this catalyst-supporting honeycomb structure is packed in a casing.
Abstract:
A method of forming a ceramic matrix composite structure. The method comprises forming at least one prepregged composite material comprising a ceramic fiber preform and a pre-ceramic matrix slurry. The at least one prepregged composite material is placed over at least one surface of a tool using an advanced fiber placement apparatus to form an at least partially uncured composite material structure. The at least partially uncured composite material structure is exposed at least to elevated temperatures to convert the at least partially uncured composite material structure into a ceramic matrix composite structure. A system for forming a ceramic matrix composite structure, an advanced fiber placement apparatus, and a ceramic matrix composite structure are also described.