摘要:
A display cover layer may be mounted in an electronic device housing using housing structures such as corner brackets. A slot antenna may be formed from a corner bracket opening, metal traces on a hollow plastic support structure, or other conductive structures. The slot antenna may have a main portion with opposing ends. An antenna feed may be located at one of the ends. The slot antenna may have a slot with one or more bends. The bends may provide the slot antenna with a C-shaped outline. A side branch slot may extend from the main portion of the slot at a location between the two bends. The presence of the side branch slot may enhance antenna bandwidth. A hollow enclosure may serve as an antenna support structure and as a speaker box enclosing a speaker driver. The antenna feed may be positioned so as to overlap the speaker driver.
摘要:
A display cover layer may be mounted in an electronic device housing using housing structures such as corner brackets. A slot antenna may be formed from a corner bracket opening, metal traces on a hollow plastic support structure, or other conductive structures. The slot antenna may have a main portion with opposing ends. An antenna feed may be located at one of the ends. The slot antenna may have a slot with one or more bends. The bends may provide the slot antenna with a C-shaped outline. A side branch slot may extend from the main portion of the slot at a location between the two bends. The presence of the side branch slot may enhance antenna bandwidth. A hollow enclosure may serve as an antenna support structure and as a speaker box enclosing a speaker driver. The antenna feed may be positioned so as to overlap the speaker driver.
摘要:
Electronic devices may be provided with antenna structures such as distributed loop antenna resonating element structures. A distributed loop antenna may be formed on an elongated dielectric carrier and may have a longitudinal axis. The distributed loop antenna may include a loop antenna resonating element formed from a sheet of conductive material that extends around the longitudinal axis. A gap may be formed in the sheet of conductive material. The gap may be located under an opaque masking layer on the underside of a display cover glass associated with a display. The loop antenna resonating element may have a main body portion that includes the gap and may have an extended tail portion that extends between the display and conductive housing structures. The main body portion and extended tail portion may be configured to ensure that undesired waveguide modes are cut off during operation of the loop antenna.
摘要:
Electronic devices may be provided with antenna structures such as distributed loop antenna resonating element structures. A distributed loop antenna may be formed on an elongated dielectric carrier and may have a longitudinal axis. The distributed loop antenna may include a loop antenna resonating element formed from a sheet of conductive material that extends around the longitudinal axis. A gap may be formed in the sheet of conductive material. The gap may be located under an opaque masking layer on the underside of a display cover glass associated with a display. The loop antenna resonating element may have a main body portion that includes the gap and may have an extended tail portion that extends between the display and conductive housing structures. The main body portion and extended tail portion may be configured to ensure that undesired waveguide modes are cut off during operation of the loop antenna.
摘要:
Electronic devices may be provided with antenna structures. The antenna structures may be used in wirelessly transmitting and receiving radio-frequency signals. Antenna structures may be formed from molded dielectric substrates. Patterned conductive material may be formed on the dielectric substrates. The dielectric substrates may be formed from molded materials such as glass or ceramic. Sheets of dielectric or dielectric powder may be compressed to form a dielectric substrate of a desired shape. The patterned conductive material may be formed from metallic paint or other conductors. A hollow antenna chamber may be formed by joining molded dielectric structures. An antenna such as an indirectly-fed loop antenna or other antennas may be formed from the molded dielectric substrates and patterned conductors.
摘要:
Electronic devices may be provided with antenna structures. The antenna structures may be used in wirelessly transmitting and receiving radio-frequency signals. Antenna structures may be formed from molded dielectric substrates. Patterned conductive material may be formed on the dielectric substrates. The dielectric substrates may be formed from molded materials such as glass or ceramic. Sheets of dielectric or dielectric powder may be compressed to form a dielectric substrate of a desired shape. The patterned conductive material may be formed from metallic paint or other conductors. A hollow antenna chamber may be formed by joining molded dielectric structures. An antenna such as an indirectly-fed loop antenna or other antennas may be formed from the molded dielectric substrates and patterned conductors.
摘要:
An electronic device may have a housing in which an antenna and a proximity sensor formed from flex circuit structures are mounted. The flex circuit structures may include first and second flex circuit layers. The first and second flex circuit layers may include metal antenna structures and metal proximity sensor electrode structures. Solder may be used to attach electrical components to the flex circuit layers and may be used to electrically connect metal structures on the first and second flex circuit layers to each other. The first and second flex circuit layers may be laminated together using a compressive fixture. The compressive fixture may have a first fixture with a convex surface and a second fixture with a concave surface so that the laminated flex circuit layers are provided with a bend.
摘要:
An electronic device may have a housing in which an antenna and a proximity sensor formed from flex circuit structures are mounted. The flex circuit structures may include first and second flex circuit layers. The first and second flex circuit layers may include metal antenna structures and metal proximity sensor electrode structures. Solder may be used to attach electrical components to the flex circuit layers and may be used to electrically connect metal structures on the first and second flex circuit layers to each other. The first and second flex circuit layers may be laminated together using a compressive fixture. The compressive fixture may have a first fixture with a convex surface and a second fixture with a concave surface so that the laminated flex circuit layers are provided with a bend.
摘要:
Cavity antennas may be provided for electronic devices. A cavity antenna may have a conductive antenna cavity with an opening. An antenna resonating element may be soldered within the cavity opening. An electronic device may have a display that is covered by a display cover layer. A cavity antenna may be mounted so that the cavity opening is located under a portion of the display cover layer outside of the active display region. An antenna cavity for a cavity antenna may have one or more bends. A curved antenna cavity or a cavity antenna with one or more angled branches may have a portion that extends between a conductive housing wall and internal device components such as a display. A speaker may be formed using the interior volume within a cavity antenna.
摘要:
Electronic devices may be provided with antenna structures. The antenna structures may include an antenna support structure covered with patterned antenna traces. An antenna support structure may be mounted in an electronic device so that a surface of the antenna support structure that is covered with patterned antenna traces lies flush with a planar surface of the electronic device housing. A display cover layer or other planar structure may be attached to the surface of the antenna support structure and the planar surface of the housing adhesive. Injection molding and extrusion techniques may be used in forming a support structure with elongated parallel cavities. An injection molding tool may have a mold core supported by a support structure at one end, supporting engagement features at the ends of mating mold core structures, or support pins. Molded interconnect devices may be soldered to laser direct structuring components to form antennas.