摘要:
A method and apparatus for a virtual circuit data area within a packet data frame is disclosed. The method may include operating (320) in a multiple connections sharing packet data frame structure with a packet oriented switching wireless access point and a related network for providing data to a wireless communication device engaged in data communications and determining (330) if a pseudo-circuit switched data area within a packet data frame format is optimal for a connection. The method may also include setting up (340) a virtual circuit data area within a packet data frame using a control configuration if a pseudo-circuit switched data area within a packet data frame format is optimal for a connection and sending (350) data in the virtual circuit data area.
摘要:
A method and apparatus for uplink power alignment estimation in a communication system includes a step 600 of defining an upper threshold and a lower threshold for a transmit power correction (TPC) level. A next step 602 includes keeping a total of accumulated TPC commands. A next step 604 includes determining that a power correction is needed. A next step 608 includes generating a TPC command to be sent to a user equipment per the needed power correction. A next step 610 includes adjusting the total according to one of the following conditions: if the total is between the upper and lower thresholds then the total is changed per the needed power correction, if the total is at either of the thresholds and the needed power correction would not exceed either of the thresholds then the total is changed per the needed power correction, and if the total is at either of the thresholds and the needed power correction would exceed either of the thresholds then total is kept the same.
摘要:
An apparatus amplifies RF signals in a communication system by using a first directional coupler having at least two inputs and at least two outputs; at least two RF amplifiers, where an input of each RF amplifier is connected to a different one of the at least two outputs of the first directional coupler; and a second directional coupler having at least two inputs and at least two outputs, where each one of the at least two inputs is connected to an output of a different one of the at least two RF amplifiers. The at least two outputs of the second directional coupler are connected to at least two antennas, respectively.
摘要:
A base station subsystem includes at least one transmit branch having a forward path that includes a signal processing unit coupled at an input to an input Fourier Transform Matrix (FTM) and at an output to an output FTM. The transmit branch further includes two error compensation loops, an inner feedback loop and an outer feedback loop. The inner feedback loop provides error compensation for error introduced by the signal processing section to a signal input to the transmit branch. The outer loop provides error compensation for all residual error introduced into the signal when routed through the transmit branch forward path after error compensation may be performed by the inner feedback loop.
摘要:
A scheduler capable of operating in an Orthogonal Frequency Division Multiplexing communication system schedules a control channel for a user equipment by determining a channel quality metric associated with the user equipment, calculating a target control channel element quality metric, determining a control channel element utilization rate, wherein the control channel element utilization rate a past rate of utilization of control channel elements, and selecting a control channel element aggregation level for the control channel based on the channel quality metric, the target control channel element quality metric, and the control channel element utilization rate. The scheduler then allocates control channel elements to the control channel based on the selected control channel element aggregation level. The scheduler further may steal power from one or more unused control channel elements and assign the stolen power to control channel elements assigned to the control channel.
摘要:
A MIMO base station is provided that includes a multi-channel transmitter having an input Fourier Transform Matrix (FTM) and an output FTM that are each coupled to an intervening signal processing section having multiple radio frequency (RF) amplifiers. A signal applied to an input port of the input FTM is distributed to all RF amplifiers of the transmitter by the input FTM and then is recombined by the output FTM such that the signal is routed to a single antenna of the multiple antennas of an antenna array. Thus, for both MIMO and non-MIMO transmissions, all RF amplifiers are used to amplify each input signal, but the non-MIMO transmission signal then is recombined such that only a single transmit antenna then is used to transmit the signal. The base station further provides antenna selection for a single antenna transmission and gain allocation among the multiple antennas for a MIMO transmission.
摘要:
A scheduler capable of operating in an Orthogonal Frequency Division Multiplexing communication system schedules a control channel for a user equipment by determining a channel quality metric associated with the user equipment, calculating a target control channel element quality metric, determining a control channel element utilization rate, wherein the control channel element utilization rate a past rate of utilization of control channel elements, and selecting a control channel element aggregation level for the control channel based on the channel quality metric, the target control channel element quality metric, and the control channel element utilization rate. The scheduler then allocates control channel elements to the control channel based on the selected control channel element aggregation level. The scheduler further may steal power from one or more unused control channel elements and assign the stolen power to control channel elements assigned to the control channel.
摘要:
A MIMO base station is provided that includes a multi-channel transmitter having an input Fourier Transform Matrix (FTM) and an output FTM that are each coupled to an intervening signal processing section having multiple radio frequency (RF) amplifiers. A signal applied to an input port of the input FTM is distributed to all RF amplifiers of the transmitter by the input FTM and then is recombined by the output FTM such that the signal is routed to a single antenna of the multiple antennas of an antenna array. Thus, for both MIMO and non-MIMO transmissions, all RF amplifiers are used to amplify each input signal, but the non-MIMO transmission signal then is recombined such that only a single transmit antenna then is used to transmit the signal. The base station further provides antenna selection for a single antenna transmission and gain allocation among the multiple antennas for a MIMO transmission.
摘要:
A threshold tracking loop (TTL) (400) for detecting the time of arrival of a spread spectrum wireless communication signal includes a pseudo-noise (PN) generator (440) for generating a receive PN code for use in spread spectrum decoding and a series of time delay units (401-408) for adjusting a phase offset of the PN code. A first PN despreader (423) is coupled to the time delay units and PN generator for despreading an early pilot signal (413). A second despreader (425) is coupled to the time delay units and PN generator for despreading a late pilot signal (415). A first comparison circuit (443) is coupled to the first PN despreader for comparing a signal value of the early pilot signal with a preselected threshold value (322) and for advancing the PN code phase offset if the early signal value is greater than the threshold value. A second comparison circuit (445) is coupled to the second PN despreader for comparing a signal value of the late pilot signal with the preselected threshold value and for retarding the PN code phase offset if the late signal value is less than the threshold value. The TTL is completed by a loop filter coupled to the PN generator and the first and second comparison circuits.
摘要:
Embodiments include methods and apparatus for granting scheduling requests in a wireless communications system that includes an eNB, a plurality of UEs, and a public safety system. The eNB receives multiple scheduling requests from multiple UEs, where each of the scheduling requests indicates that a corresponding UE is requesting uplink data transmission resources. The eNB determines a priority value for each of the scheduling requests based on multiple scoring criteria, resulting in a plurality of priority values associated with the scheduling requests. The eNB transmits one or more scheduling request grants to a subset of the UEs, where the subset includes one or more UEs that are associated with one or more scheduling requests having relatively high priority values. In an embodiment, the multiple scoring criteria include information associated with a public safety activity (e.g., a user role, a jurisdictional coverage area, an incident type, and/or an application type).