摘要:
Data is transmitted between a central office and customer premises by a wavelength division multiplex passive optical network. Two laser beams with separate wavelengths are transmitted from the central office to an optical network unit in the customer premises. Both laser beams carry downstream data. One laser beam is intensity modulated by on/off keying. The other laser beam is phase modulated by differential phase shift keying, which maintains a constant optical intensity. The first laser beam is received by a first optical receiver, which demodulates the first downstream data. The second laser beam is split in two. One laser beam is sent to a second optical receiver, which demodulates the second downstream data. The other laser beam is sent to a reflective semiconductor amplifier, which modulates the beam with upstream data and transmits the beam back to a receiver in the central optical system.
摘要:
An optical network component, architecture and method for a wavelength division multiplexed passive optical network includes a band coupler configured to demultiplex first and second wavelength division multiplexed content transmitted from an optical line terminal into a first band signal and a second band signal. An arrayed wavelength grating is configured to receive the first band signal and to further demultiplex the first band signal into different wavelengths to provide a plurality of wavelength signals. An optical splitter is configured to split the second band signal into sub-signals and multiplex the sub-signals with each of the wavelength signals such that the first and second wavelength division multiplexed content is provided on a single wavelength to a user.
摘要:
Data is transmitted between a central office and customer premises by a wavelength division multiplex passive optical network. Two laser beams with separate wavelengths are transmitted from the central office to an optical network unit in the customer premises. Both laser beams carry downstream data. One laser beam is intensity modulated by on/off keying. The other laser beam is phase modulated by differential phase shift keying, which maintains a constant optical intensity. The first laser beam is received by a first optical receiver, which demodulates the first downstream data. The second laser beam is split in two. One laser beam is sent to a second optical receiver, which demodulates the second downstream data. The other laser beam is sent to a reflective semiconductor amplifier, which modulates the beam with upstream data and transmits the beam back to a receiver in the central optical system.
摘要:
An optical network component, architecture and method for a wavelength division multiplexed passive optical network includes a band coupler configured to demultiplex first and second wavelength division multiplexed content transmitted from an optical line terminal into a first band signal and a second band signal. An arrayed wavelength grating is configured to receive the first band signal and to further demultiplex the first band signal into different wavelengths to provide a plurality of wavelength signals. An optical splitter is configured to split the second band signal into sub-signals and multiplex the sub-signals with each of the wavelength signals such that the first and second wavelength division multiplexed content is provided on a single wavelength to a user.
摘要:
A network system and method include a wireless base station integrated at a central office of a service provider. The wireless base station is configured to provide portable and fixed services to customers. A passive optical network is coupled to the wireless base station at the central office to provide a link to extend an antenna for wireless operations of the wireless base station to a remote site such that a wireless signal from the wireless base station is transmitted in parallel with a passive fiber network signal through the link.
摘要:
A network system and method include a wireless base station integrated at a central office of a service provider. The wireless base station is configured to provide portable and fixed services to customers. A passive optical network is coupled to the wireless base station at the central office to provide a link to extend an antenna for wireless operations of the wireless base station to a remote site such that a wireless signal from the wireless base station is transmitted in parallel with a passive fiber network signal through the link.
摘要:
An optical system and method includes a source-free optical network unit coupled to an optical fiber for receiving an original carrier signal with downstream data over the optical fiber. The optical network unit includes a modulator configured to remodulate the original carrier signal with upstream data to produce an upstream data signal for transmission back down the optical fiber in a direction opposite to a direction in which that original carrier signal was received.
摘要:
An optical system and method includes a source-free optical network unit coupled to an optical fiber for receiving an original carrier signal with downstream data over the optical fiber. The optical network unit includes a modulator configured to remodulate the original carrier signal with upstream data to produce an upstream data signal for transmission back down the optical fiber in a direction opposite to a direction in which that original carrier signal was received.
摘要:
A passive optical network (PON) device, system and method include an optical line terminal (OLT) receiver configured to receive multiple signals at different wavelengths simultaneously and enable multiple transmitters to operate at the same time during one upstream time slot. The optical line terminal employs Orthogonal Frequency Division Multiple Access (OFDMA) to transparently support a plurality of applications and enable dynamic bandwidth allocation among these applications where the bandwidth is allocated in two dimensional frequency and time space.
摘要:
A method includes coupling an optical signal upconverted to a higher frequency and a digital signal having a bit rate similar to that of a subchannel of the upconverted optical signal, and obtaining, responsive to the coupling, a transmission signal with an optical carrier frequency carrying the digital signal and subchannels about the optical carrier frequency carrying the upconverted optical signal, the bit rate of the optical carrier being similar to that of the subchannels. In a preferred embodiment, the coupling includes electrically power coupling the upconverted optical signal with the digital signal, and modulating the coupled optical carrier frequency carrying the digital signal and subchannels about the optical carrier frequency carrying the upconverted optical signal.