摘要:
A system and method is disclosed for providing a low voltage high density multi-bit storage flash memory. A dual bit memory cell of the invention comprises a substrate having a common source, a first drain and first channel, and a second drain and a second channel. A common control gate is located above the source. A first floating gate and a second floating gate are located on opposite sides of the control gate. Each floating gate is formed with a sharp tip adjacent to the control gate and an upper curved surface that follows a contour of the surface of the control gate. The sharp tips of the floating gates efficiently discharge electrons into the control gate when the memory cell is erased. The curved surfaces increase capacitor coupling between the control gate and the floating gates.
摘要:
A system and method is disclosed for providing a low voltage high density multi-bit storage flash memory. A dual bit memory cell of the invention comprises a substrate having a common source, a first drain and first channel, and a second drain and a second channel. A common control gate is located above the source. A first floating gate and a second floating gate are located on opposite sides of the control gate. Each floating gate is formed with a sharp tip adjacent to the control gate and an upper curved surface that follows a contour of the surface of the control gate. The sharp tips of the floating gates efficiently discharge electrons into the control gate when the memory cell is erased. The curved surfaces increase capacitor coupling between the control gate and the floating gates.
摘要:
A system and method is disclosed for providing a low voltage high density multi-bit storage flash memory. A dual bit memory cell of the invention comprises a substrate having a common source, a first drain and first channel, and a second drain and a second channel. A common control gate is located above the source. A first floating gate and a second floating gate are located on opposite sides of the control gate. Each floating gate is formed with a sharp tip adjacent to the control gate and an upper curved surface that follows a contour of the surface of the control gate. The sharp tips of the floating gates efficiently discharge electrons into the control gate when the memory cell is erased. The curved surfaces increase capacitor coupling between the control gate and the floating gates.
摘要:
A system and method are disclosed for increasing the reliability of a channel erase procedure in an electrically erasable programmable read only memory (EEPROM) memory cell. A memory cell of the present invention comprises a program gate, a control gate, and a floating gate that erase data using a channel erase procedure. An erase capacitor is coupled to the floating gate to provide a low voltage bias that decreases the voltage that is required to perform a Fowler-Nordheim erase process in the memory cell. The erase capacitor of the present invention is formed without adding a step in the manufacturing process of the memory cell. Memory cells of the present invention are low cost, high endurance, low voltage memory cells.
摘要:
A non-volatile memory cell includes a program transistor and a control capacitor. A portion of a substrate associated with the program transistor is exposed to multiple implantations (such as DNW, HiNWell, HiPWell, and P-well implantations). Similarly, a portion of the substrate associated with the control capacitor is exposed to multiple implantations (such as DNW, HiNWell, HiPWell, P-well, and N-well implantations). These portions of the substrate may have faster oxidation rates than other portions of the substrate, allowing a thicker front-end gate oxide to be formed over these portions of the substrate. In addition, a rapid thermal process anneal can be performed, which may reduce defects in the front-end gate oxide and increase its quality without having much impact on the oxide over the other portions of the substrate.
摘要:
A system and method is disclosed for improving complementary metal oxide semiconductor (CMOS) compatible non volatile memory (NVM) retention reliability in memory cells. A memory cell of the invention comprises a backend layer that reduces charge leakage from a floating gate of the memory cell. A first bottom portion of the backend layer is formed from a first layer of silicon oxynitride having a low value of defect/trap density. A second top portion of the backend layer is formed from a second layer of silicon oxynitride having a high value of defect/trap density. The first layer of silicon oxynitride inhibits electron transport and the second layer of silicon oxynitride protects CMOS devices from plasma induced damage.
摘要:
A method for forming a transistor gate includes performing a first exposure of a photo-resist material on a semiconductor device. The first exposure defines a line pattern in the photo-resist material. The method also includes performing a second exposure of the photo-resist material, where the second exposure trims a resist profile of the line pattern. The method further includes etching a conductive material on the semiconductor device to form a transistor gate based on the line pattern. The first exposure could represent a best focus exposure of the photo-resist material, and the second exposure could represent a positive focus exposure of the photo-resist material. The trimming of the line pattern's resist profile may cause the transistor gate to have at least one of a rounded edge and a rounded corner. This may allow a thicker insulating material, such as tetraethylorthosilicate, to be deposited around portions of the transistor gate.
摘要:
A method includes forming a release layer of a semiconductor device being fabricated, where the release layer has a trapezoidal shape. The method also includes forming a cantilever, which has a cantilever arm formed over the release layer. The method further includes removing at least part of the release layer from under the cantilever arm. The release layer could be formed using a photo-resist material. The photo-resist material can be patterned by exposing the photo-resist material using multiple exposures. A first exposure could expose a portion of the photo-resist material, where the exposed portion has substantially vertical sides. A second exposure could give the exposed portion of the photo-resist material slanted sides. A wet etch could be performed to remove the release layer from under the cantilever arm.
摘要:
A non-volatile memory cell includes a program transistor and a control capacitor. A portion of a substrate associated with the program transistor is exposed to multiple implantations (such as DNW, HiNWell, HiPWell, and P-well implantations). Similarly, a portion of the substrate associated with the control capacitor is exposed to multiple implantations (such as DNW, HiNWell, HiPWell, P-well, and N-well implantations). These portions of the substrate may have faster oxidation rates than other portions of the substrate, allowing a thicker front-end gate oxide to be formed over these portions of the substrate. In addition, a rapid thermal process anneal can be performed, which may reduce defects in the front-end gate oxide and increase its quality without having much impact on the oxide over the other portions of the substrate.
摘要:
A memory cell includes a first transistor and a second transistor. The first transistor is configured as an erase capacitor, and the second transistor is configured as a program transistor. Gates of the first and second transistors are coupled together to form a floating gate. During an erase operation, a first voltage (like 12V-24V) is applied to the first transistor, such as to a source, a body, and a drain of the first transistor. A second voltage (like ground) is applied to the second transistor, such as to a source and a body of the second transistor. A drain of the second transistor could be grounded. The first and second voltages cause electron discharge from the floating gate through the first transistor and electron injection through the second transistor onto the floating gate. This helps to prevent an over-erase condition from forming in the memory cell.