摘要:
A magnetic head having an air bearing surface is used to reduce thermal pole tip protrusion and recession. The magnetic head includes a substrate and a data transducer positioned upon the substrate adjacent the air bearing surface. The data transducer is comprised of a plurality of metallic layers. A compensation structure is positioned adjacent to at least one of the plurality of metallic layers, is exposed at the air bearing surface or recessed at the ABS and extends substantially perpendicular from the air bearing surface. The compensation structure is formed of a material having a coefficient of thermal expansion less than a coefficient of thermal expansion of a material forming the substrate.
摘要:
A transducing head formed upon a slider has a transducer, an electrical contact layer, a stud electrically connected to the contact layer, and a bond pad electrically connected to the stud. The electrical contact layer is electrically connected to the transducer. The stud is formed of a material having a coefficient of thermal expansion less than about 1.3 times a coefficient of thermal expansion of a slider material forming the slider. The bond pad has a metallic underlayer and a top layer. The metallic underlayer is formed of a material having a coefficient of thermal expansion less than about 1.1 times the coefficient of thermal expansion of the slider material.
摘要:
The invention offers a magnetic recording head that includes a substrate, a read sensor, and at least one shield positioned adjacent to the read sensor, wherein the shield contributes to thermal pole-tip recession in an amount less than about 0.5 Å/° C. The invention also offers a magnetic recording head that includes a substrate having a coefficient of thermal expansion, a read sensor, and at least one shield, positioned adjacent to the read sensor, that has a coefficient of thermal expansion within ±2×10−6/° C. of the coefficient of thermal expansion of the substrate. The invention further offers a magnetic recording head that includes a substrate, a read sensor, and at least one shield, positioned adjacent the read sensor, with a thickness of from about 0.05 μm to about 0.5 μm.
摘要:
A data transducer having an air bearing surface is used to reduce thermal pole tip protrusion. The data transducer includes a write via and a top pole having one end adjacent the air bearing surface and an opposite end contacting the write via. The yoke extends from the write via in two directions towards the air bearing surface and is recessed from the air bearing surface. The yoke has a first end and a second end. The data transducer includes a shared pole adjacent the air bearing surface and co-planar to the yoke wherein a gap is located between the shared pole and the yoke. A shared pole extension extends between the shared pole and the first and second ends of the yoke.
摘要:
A transducing head formed upon a slider has an air bearing surface, a top magnetic pole, a shared magnetic pole, a write via, and a shared pole extension. The write via is positioned opposite the air bearing surface and extends between the top magnetic pole and the shared magnetic pole. The shared pole extension is positioned adjacent the air bearing surface and extends from the shared magnetic pole toward the top magnetic pole. The shared pole extension is separated from the top magnetic pole by a write gap. The shared pole extension is formed of a multilayer having a layer of a first material having a high magnetic moment and a layer a second material having a coefficient of thermal expansion substantially similar to a coefficient of thermal expansion of the slider material.
摘要:
In an example, a method of manufacturing a transducer head comprises configuring a control circuit to actively synchronize magnetic responses of a shield and a write pole during operation. The method also comprises configuring the control circuit to energize at least one coil wire during operation with a current direction opposite to current flow in a main transducer head coil. In another example, a method comprises actively synchronizing magnetic responses of a shield and a write pole. In another example, a transducer head comprises a write pole and a shield, and a control circuit actively synchronizes magnetic responses of the shield and the write pole.
摘要:
In an example, a method of manufacturing a transducer head comprises configuring a control circuit to actively synchronize magnetic responses of a shield and a write pole during operation. The method also comprises configuring the control circuit to energize at least one coil wire during operation with a current direction opposite to current flow in a main transducer head coil. In another example, a method comprises actively synchronizing magnetic responses of a shield and a write pole. In another example, a transducer head comprises a write pole and a shield, and a control circuit actively synchronizes magnetic responses of the shield and the write pole.
摘要:
A device having an air bearing surface, the device including a writer portion having an air bearing surface at the air bearing surface of the device; and an overcoat layer disposed on at least a portion of the air bearing surface of the writer portion, wherein the overcoat includes a material having a magnetic moment of at least about 0.1 Tesla (T).
摘要:
A magnetic sensing device includes a first electrode, a second electrode, a first magnetic shield, a second magnetic shield, and a sensor. The first magnetic shield forms at least a portion of the first electrode. The second magnetic shield includes a first region that forms at least a portion of the first electrode and a second region that forms at least a portion of the second electrode. The sensor is positioned between the first and second magnetic shields and is electrically connected in series between the first and second electrodes.
摘要:
The magnetoresistive sensor has an MR stack and side shields formed by contacts and/or pedestals on either side of the MR stack. The materials for the contacts and pedestals are selected to be magnetically soft, electrically conductive and have a low AMR signal. The contacts and pedestals are magnetically decoupled from the hard bias materials by placement of spacers.