Abstract:
A device having an air bearing surface, the device including a writer portion having an air bearing surface at the air bearing surface of the device; and an overcoat layer disposed on at least a portion of the air bearing surface of the writer portion, wherein the overcoat includes a material having a magnetic moment of at least about 0.1 Tesla (T).
Abstract:
A magnetic sensing device includes a first electrode, a second electrode, a first magnetic shield, a second magnetic shield, and a sensor. The first magnetic shield forms at least a portion of the first electrode. The second magnetic shield includes a first region that forms at least a portion of the first electrode and a second region that forms at least a portion of the second electrode. The sensor is positioned between the first and second magnetic shields and is electrically connected in series between the first and second electrodes.
Abstract:
The magnetoresistive sensor has an MR stack and side shields formed by contacts and/or pedestals on either side of the MR stack. The materials for the contacts and pedestals are selected to be magnetically soft, electrically conductive and have a low AMR signal. The contacts and pedestals are magnetically decoupled from the hard bias materials by placement of spacers.
Abstract:
The magnetoresistive sensor has a bottom shield, a nonmagnetic metallic pedestal, a bottom reader gap, a biasing element, a magnetoresistive stack, current leads, a top reader gap, and a top shield. The nonmagnetic metallic pedestal is positioned on a portion of the bottom shield and the nonmagnetic metallic pedestal has a width less than the width of the bottom shield. The bottom reader gap is positioned on the nonmagnetic metallic pedestal and on the bottom shield such that a portion of the bottom reader gap over the nonmagnetic metallic pedestal is raised relative to portions of the bottom reader gap not over the nonmagnetic metallic pedestal.
Abstract:
The present invention is a perpendicular writer having an air-bearing surface, a main pole with an extension, and return pole, and a back gap closure intermediate the main pole extension and the return pole. The main pole includes a top magnetic layer and a soft magnetic underlayer separated by a nonmagnetic spacer. The main pole extension is in direct contact with the main pole and recessed from the air-bearing surface. The top magnetic layer forms a trailing edge of the main pole at the ABS and has a magnetic moment greater than that of the soft magnetic underlayer. Further, the top magnetic layer and the soft magnetic underlayer are antiferromagnetically coupled through the thin nonmagnetic spacer. The nonmagnetic spacer has predominantly 111-crystalline texture and promotes reduction of coercivity and grain size along with an increase of anistropy of the top magnetic layer material.
Abstract:
A layer of iron—silicon—aluminum alloy is deposited over a seedlayer of an amorphous alloy to form a shield for a read element in a recording head. Percentage weights of iron, silicon, and aluminum in the iron—silicon—aluminum alloy are each selected such that the alloy has both near-zero magnetostriction and distinct magnetocrystalline anisotropy. Use of the amorphous alloy seedlayer results in greater magnetocrystalline anisotropy in the shield.
Abstract:
In an example, a method of manufacturing a transducer head comprises configuring a control circuit to actively synchronize magnetic responses of a shield and a write pole during operation. The method also comprises configuring the control circuit to energize at least one coil wire during operation with a current direction opposite to current flow in a main transducer head coil. In another example, a method comprises actively synchronizing magnetic responses of a shield and a write pole. In another example, a transducer head comprises a write pole and a shield, and a control circuit actively synchronizes magnetic responses of the shield and the write pole.
Abstract:
A magnetic head that includes: a slider having a leading edge and a trailing edge; and a transducer, the transducer formed on the trailing edge of the slider and the transducer including: a substrate; a basecoat positioned adjacent the substrate, wherein the basecoat includes a material having a Young's modulus that is less than that of alumina and a coefficient of thermal expansion that is less than that of alumina; a reader; a writer; a heater; and an overcoat encasing at least a portion of the transducer, wherein the overcoat includes a material having a Young's modulus that is less than that of alumina and a coefficient of thermal expansion that is less than that of alumina.
Abstract:
A shield for a read element of a magnetic recording head includes a first domain with boundaries remote from the read element and stabilized with a patterned bias element. The patterned bias element comprises a topographical pattern of grooves formed on the shield substrate.
Abstract:
A temperature sensor of a head transducer measures temperature near or at the close point. The measured temperature varies in response to changes in spacing between the head transducer and a magnetic recording medium. A detector is coupled to the temperature sensor and is configured to detect a change in a DC component of the measured temperature indicative of onset of contact between the head transducer and the medium. Another head transducer configuration includes a sensor having a sensing element with a high temperature coefficient of resistance to interact with asperities of the medium. Electrically conductive leads are connected to the sensing element and have a low temperature coefficient of resistance relative to that of the sensing element, such thermally induced resistance changes in the leads have a negligible effect on a response of the sensing element to contact with the asperities.