摘要:
An electrolyte for a lithium secondary battery includes lithium salts, a non-aqueous organic solvent, and additive compounds, which initiates decomposition at 4V to 5V and show a constant current maintenance plateau region of more than or equal to 0.5V at measurement of LSV (linear sweep voltammetry). The additive compounds added to the electrolyte of the present invention decompose earlier than the organic solvent to form a conductive polymer layer on the surface of a positive electrode by increased electrochemical energy and heat at overcharge. The conductive polymer layer prevents decomposition of the organic solvent. Accordingly, the electrolyte inhibits gas generation caused by decomposition of the organic solvent during high temperature storage, and also improves safety of the battery during overcharge.
摘要:
An electrolyte for a lithium secondary battery includes lithium salts, a non-aqueous organic solvent, and additive compounds. The additive compounds added to the electrolyte of the present invention decompose earlier than the organic solvent to form a conductive polymer layer on the surface of a positive electrode, and prevent decomposition of the organic solvent. Accordingly, the electrolyte inhibits gas generation caused by decomposition of the organic solvent at initial charging, and thus reduces an increase of internal pressure and swelling during high temperature storage, and also improves safety of the battery during overcharge.
摘要:
An electrolyte for a lithium secondary battery includes lithium salts, a non-aqueous organic solvent, and additive compounds, which initiates decomposition at 4V to 5V and show a constant current maintenance plateau region of more than or equal to 0.5V at measurement of LSV (linear sweep voltammetry). The additive compounds added to the electrolyte of the present invention decompose earlier than the organic solvent to form a conductive polymer layer on the surface of a positive electrode by increased electrochemical energy and heat at overcharge. The conductive polymer layer prevents decomposition of the organic solvent. Accordingly, the electrolyte inhibits gas generation caused by decomposition of the organic solvent during high temperature storage, and also improves safety of the battery during overcharge.
摘要:
An electrolyte for a lithium secondary battery includes lithium salts, a non-aqueous organic solvent, and additive compounds, which initiates decomposition at 4V to 5V and show a constant current maintenance plateau region of more than or equal to 0.5V at measurement of LSV (linear sweep voltammetry). The additive compounds added to the electrolyte of the present invention decompose earlier than the organic solvent to form a conductive polymer layer on the surface of a positive electrode by increased electrochemical energy and heat at overcharge. The conductive polymer layer prevents decomposition of the organic solvent. Accordingly, the electrolyte inhibits gas generation caused by decomposition of the organic solvent during high temperature storage, and also improves safety of the battery during overcharge.
摘要:
A non-aqueous electrolyte for a lithium secondary battery is provided. The electrolyte comprises a lithium salt, a non-aqueous solvent, and an organic compound selected from the group consisting of compounds represented by Formulae (1) to (6): wherein R1 to R12 are each independently selected from the group consisting of primary, secondary, and tertiary alkyl groups, alkenyl groups, and aryl groups; X is hydrogen or halogen; and n and m are numerical values ranging from 0 to 3.
摘要:
A non-aqueous electrolyte for a lithium secondary battery is provided. The electrolyte comprises a lithium salt, a non-aqueous solvent, and an organic compound selected from the group consisting of compounds represented by Formulae (1) to (6): wherein R1 to R12 are each independently selected from the group consisting of primary, secondary, and tertiary alkyl groups, alkenyl groups, and aryl groups; X is hydrogen or halogen; and n and m are numerical values ranging from 0 to 3.
摘要:
A non-aqueous electrolyte for a lithium secondary battery is provided. The electrolyte comprises a lithium salt, a non-aqueous solvent, and an organic compound selected from the group consisting of compounds represented by Formulae (1) to (6): wherein R1 to R12 are each independently selected from the group consisting of primary, secondary, and tertiary alkyl groups, alkenyl groups, and aryl groups; X is hydrogen or halogen; and n and m are numerical values ranging from 0 to 3.
摘要:
An electrolyte for a lithium secondary battery is provided. The electrolyte includes a lithium salt, a non-aqueous organic solvent, and a compound represented by Formula (1): wherein R1, R2, and R3 are each independently selected from the group consisting of hydrogen, primary, secondary, and tertiary alkyl groups, alkenyl groups, and aryl groups. The compound of the present invention is decomposed earlier than an electrolytic organic solvent, and an organic SEI film is formed on a negative electrode, thereby inhibiting the electrolytic organic solvent from decomposing.
摘要:
An active material for a battery has a surface-treatment layer including a compound of the formula (1): MXOk (1) wherein M is at least one element selected from an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element, a transition metal, and a rare-earth element, X is an element capable of forming a double bond with oxygen, and k is a numerical value in the range of 2 to 4.
摘要:
An active material for a battery includes an electrochemically reversibly oxidizable and reducible base material selected from the group consisting of a metal, a lithium-containing alloy, a sulfur-based compound, and a compound that can reversibly form a lithium-containing compound by a reaction with lithium ions and a surface-treatment layer formed on the base material and comprising a compound of the formula MXOk, wherein M is at least one element selected from the group consisting of an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element, a transition metal, and a rare-earth element, X is an element that is capable of forming a double bond with oxygen, k is a numerical value in the range of 2 to 4.