摘要:
Provided is an ingot growing apparatus, which includes a crucible containing a silicon melt, a pulling device pulling a silicon single crystal ingot grown from the silicon melt, and a dopant supply unit disposed adjacent to the pulling device and for supplying a dopant during growing of the ingot. The neck portion may be doped at a concentration higher than that of the ingot through the dopant supply unit. Therefore, dislocation propagation velocity may be decreased and a propagation length may be shortened.
摘要:
Provided is an ingot growing apparatus, which includes a crucible containing a silicon melt, a pulling device pulling a silicon single crystal ingot grown from the silicon melt, and a dopant supply unit disposed adjacent to the pulling device and for supplying a dopant during growing of the ingot. The neck portion may be doped at a concentration higher than that of the ingot through the dopant supply unit. Therefore, dislocation propagation velocity may be decreased and a propagation length may be shortened.
摘要:
An apparatus for wet treatment of an object includes a treatment bath in which an object to be treated is received and treated; a plurality of object supporting rods rotatably installed in the treatment bath and having a plurality of slots formed in surfaces thereof to support an object so that the object stands in a direction perpendicular to a bottom surface of the treatment bath; and a rotating means connected to the object supporting rods to rotate the object in a circumferential direction by rotating the object supporting rods. Treatment fluid injecting holes for injecting a treatment fluid to the object and treatment fluid channels for supplying the treatment fluid to the treatment fluid injecting holes are formed in the object supporting rods. Thus, a dead zone in the treatment bath is removed and the treatment fluid may flow uniformly and smoothly, which improves treatment efficiency and treatment uniformity.
摘要:
A wafer unloading system and wafer processing equipment (system) including the same are disclosed. The wafer unloading system includes a fluid supply tube for supplying a fluid, a nozzle for injecting the supplied fluid, and an injection hole defined in a plate to allow the injected fluid to reach a space between a polishing pad and a wafer.
摘要:
A wafer unloading system and wafer processing equipment (system) including the same are disclosed. The wafer unloading system includes a fluid supply tube for supplying a fluid, a nozzle for injecting the supplied fluid, and an injection hole defined in a plate to allow the injected fluid to reach a space between a polishing pad and a wafer.
摘要:
Disclosed herein is a method of controlling the current of a high-speed Switched Reluctance Motor (SRM) using an inverter circuit including a first switching element, a second switching element, a first diode, a second diode and a reactor, wherein the first switching element and the first diode, the second diode and the second switching element are connected to a bridge circuit, and one end of the reactor is connected to the junction of the first switching element and the first diode, and the remaining end of the reactor is connected to the junction of the second diode and the second switching element; and excitation mode, free-wheeling mode-1, the excitation mode, and free-wheeling mode-2 are sequentially performed in a unit period T, and, when the control is terminated, demagnetization is performed.
摘要:
Disclosed herein is a torque control method for a high-speed Switched Reluctance Motor (SRM), which controls a torque in the high-speed operation of a 2-phase SRM. In the torque control method for a high-speed SRM, a positive torque (T*mA) of an active phase (A phase) of the two phases of the SRM is compensated for based on a negative torque attributable to an inactive phase (B phase) of two phases during a compensation control enable interval (ENA) ranging from a time point at which the active phase (A phase) is turned on to a time point at which tail current of the inactive phase (B phase) remains. Accordingly, the present invention can remarkably reduce a torque ripple occurring in high-speed operation mode in consideration of the influence of a negative torque attributable to tail current.
摘要:
Disclosed is a method and apparatus for detecting an excitation position of an SRM by comparison of detected currents. The method includes detecting a current by applying a first test voltage to each phase of the SRM, detecting a current by applying a second test voltage to each phase, determining an operation state of the SRM based on a deviation between the currents detected in any one of the phases, determining the operation state of the SRM as a rotation state if the deviation value exceeds a predetermined value, and applying a third test voltage to a phase excited just prior to a current excited phase to detect the current and turning on a phase to be next excited if the detected current value is more than a first reference value, and turning off the phase excited just prior to the presently excited phase if the detected current value is more than a second reference value. The phase excitation position is accurately detected according to the rotating speed without using a position sensor.
摘要:
Disclosed is a method and apparatus for detecting an excitation position of an SRM by comparison of detected currents. The method includes detecting a current by applying a first test voltage to each phase of the SRM, detecting a current by applying a second test voltage to each phase, determining an operation state of the SRM based on a deviation between the currents detected in any one of the phases, determining the operation state of the SRM as a rotation state if the deviation value exceeds a predetermined value, and applying a third test voltage to a phase excited just prior to a current excited phase to detect the current and turning on a phase to be next excited if the detected current value is more than a first reference value, and turning off the phase excited just prior to the presently excited phase if the detected current value is more than a second reference value. The phase excitation position is accurately detected according to the rotating speed without using a position sensor.