Abstract:
The disclosure belongs to wireless communication technology, and the provided method, device and system of Forward Addressing and Backward Readdressing InterConnect (FABRIC) including, the method of forward addressing and backward readdressing interconnect enables any two devices in the system to establish interconnection channels when data exchange is required, and screens out suitable relay devices among the numerous intermediate devices between the two devices, the transmission of data is controlled within a limited range, and the interconnection channel is not unique, each time of data transmission is likely to pass through different intermediate devices with randomness and redundancy, it can cope with a certain degree of device movements. A plurality of devices can carry out communication between two at the same time without conflict.
Abstract:
A fusion protein having a non-immunoglobulin polypeptide having a cysteine residue proximal to the C terminal thereof, and an immunoglobulin component with a mutated hinge region is provided. The mutation comprises a point mutated site corresponding in position to the position in a native hinge region of the cysteine residue located nearest the cysteine residue of the non-Ig component. The distance from the cysteine residue of the non-immunoglobulin polypeptide and any remaining cysteine residues of the mutated hinge region is sufficient to prevent the formation of a disulphide bond therebetween.
Abstract:
A recombinant fusion protein comprising a human erythropoietin peptide portion linked to an immunoglobulin peptide portion is described. The fusion protein has a prolonged half-life in vivo compared to naturally occurring or recombinant native human erythropoietin. In one embodiment, the protein has a half-life in vivo at least three-fold higher than native human erythropoietin. The fusion protein exhibits enhanced erythropoietic bioactivity compared to native human erythropoietin. In one embodiment, the fusion protein comprises the complete peptide sequence of a human erythropoietin (EPO) molecule and the peptide sequence of an Fc fragment of human IgG1, which Fc fragment includes the hinge region, CH2 and CH3 domains. The EPO molecule may be linked directly to the Fc fragment to avoid extraneous peptide linkers and lessen risk of an immunogenic response when administered. In one embodiment the hinge region is a human Fc fragment variant having a non-cysteine residue at amino acid 6.
Abstract:
A recombinant fusion protein comprising a human erythropoietin peptide portion linked to an immunoglobulin peptide portion is described. The fusion protein has a prolonged half-life in vivo in comparison to naturally occurring or recombinant native human erythropoietin. In one embodiment of the invention, the protein has a half-life in vivo at least three fold higher than native human erythropoietin. The fusion protein also exhibits enhanced erythropoietic bioactivity in comparison to native human erythropoietin. In one embodiment, the fusion protein comprises the complete peptide sequence of a human erythropoietin (EPO) molecule and the peptide sequence of an Fc fragment of human immunoglobulin IgG1. The Fc fragment in the fusion protein includes the hinge region, CH2 and CH3 domains of human immunoglobulin IgG1. The EPO molecule may be linked directly to the Fc fragment to avoid extraneous peptide linkers and lessen the risk of an immunogenic response when administered in vivo. In one embodiment the hinge region is a human Fc fragment variant having a non-cysteine residue at amino acid 6. The invention also relates to nucleic acid and amino acid sequences encoding the fusion protein and transfected cell lines and methods for producing the fusion protein. The invention further includes pharmaceutical compositions comprising the fusion protein and methods of using the fusion protein and/or the pharmaceutical compositions, for example to stimulate erythropoiesis in subjects in need of therapy.
Abstract:
This application relates to recombinant human interferon-like proteins. In one embodiment a recombinant protein created by gene shuffling technology is described having enhanced anti-viral and anti-proliferative activities in comparison to naturally occurring human interferon alpha 2b (HuIFN-α2b). The invention encompasses a polynucleotide encoding the protein and recombinant vectors and host cells comprising the polynucleotide. Preferably the polynucleotide is selected from the group of polynucleotides each having a sequence at least 93% identical to SEQ ID: No. 1 and the protein is selected from the group of proteins each having an amino acid sequence at least 85% identical to SEQ ID No: 2. The proteins and compositions comprising the proteins can be used for treatment of conditions responsive to interferon therapy, such as viral diseases and cancer.
Abstract translation:本申请涉及重组人类干扰素样蛋白。 在一个实施方案中,与天然存在的人类干扰素α2b(HuIFN-α2b)相比,描述了通过基因改组技术产生的重组蛋白质具有增强的抗病毒和抗增殖活性。 本发明包括编码蛋白质的多核苷酸和包含多核苷酸的重组载体和宿主细胞。 优选地,多核苷酸选自各自具有与SEQ ID:No.1至少93%相同的序列的多核苷酸,并且所述蛋白质选自蛋白质组,其各自具有与SEQ ID NO:至少85%相同的氨基酸序列 否:2.包含蛋白质的蛋白质和组合物可用于治疗对干扰素治疗(例如病毒性疾病和癌症)有反应的病症。
Abstract:
Provided are techniques for imputing a missing value for each of one or more predictor variables. Data is received from one or more data sources. For each of the one or more predictor variables, an imputation model is built based on information of a target variable; a type of imputation model to construct is determined based on the one or more data sources, a measurement level of the predictor variable, and a measurement level of the target variable; and the determined type of imputation model is constructed using basic statistics of the predictor variable and the target variable. The missing value is imputed for each of the one or more predictor variables using the data from the one or more data sources and one or more built imputation models to generate a completed data set.
Abstract:
Provided are techniques for imputing a missing value for each of one or more predictor variables. Data is received from one or more data sources. For each of the one or more predictor variables, an imputation model is built based on information of a target variable; a type of imputation model to construct is determined based on the one or more data sources, a measurement level of the predictor variable, and a measurement level of the target variable; and the determined type of imputation model is constructed using basic statistics of the predictor variable and the target variable. The missing value is imputed for each of the one or more predictor variables using the data from the one or more data sources and one or more built imputation models to generate a completed data set.
Abstract:
A power generation system includes at least one generator having at least two sets of stator windings, an active rectifier comprising power cell based modular converters associated with each set of generator windings. Each set of windings is connected to an AC voltage side of the associated active rectifier, with each active rectifier having a positive DC voltage output and a negative DC voltage output. The DC voltage outputs of active rectifiers are connected to each other in series. A medium voltage DC (MVDC) collection network comprises positive pole cables and negative pole cables, wherein each positive pole cable is connected to the positive DC voltage output of a first active rectifier and each negative pole cable is connected to the negative DC voltage output of a last active rectifier. A substation receives the negative and positive pole cables of the MVDC collection network for further transformation and transmission.
Abstract:
A recombinant fusion protein comprising a human erythropoietin peptide portion linked to an immunoglobulin peptide portion is described. The fusion protein has a prolonged half-life in vivo in comparison to naturally occurring or recombinant native human erythropoietin. In one embodiment of the invention, the protein has a half-life in vivo at least three fold higher than native human erythropoietin. The fusion protein also exhibits enhanced erythropoietic bioactivity in comparison to native human erythropoietin. In one embodiment, the fusion protein comprises the complete peptide sequence of a human erythropoietin (EPO) molecule and the peptide sequence of an Fc fragment of human immunoglobulin IgG1. The Fc fragment in the fusion protein includes the hinge region, CH2 and CH3 domains of human immunoglobulin IgG1. The EPO molecule may be linked directly to the Fc fragment to avoid extraneous peptide linkers and lessen the risk of an immunogenic response when administered in vivo. In one embodiment the hinge region is a human Fc fragment variant having a non-cysteine residue at amino acid 6. The invention also relates to nucleic acid and amino acid sequences encoding the fusion protein and transfected cell lines and methods for producing the fusion protein. The invention further includes pharmaceutical compositions comprising the fusion protein and methods of using the fusion protein and/or the pharmaceutical compositions, for example to stimulate erythropoiesis in subjects in need of therapy.
Abstract:
A fusion protein having a non-immunoglobulin polypeptide having a cysteine residue proximal to the C terminal thereof, and an immunoglobulin component with a mutated hinge region is provided. The mutation comprises a point mutated site corresponding in position to the position in a native hinge region of the cysteine residue located nearest the cysteine residue of the non-Ig component. The distance from the cysteine residue of the non-immunoglobulin polypeptide and any remaining cysteine residues of the mutated hinge region is sufficient to prevent the formation of a disulphide bond therebetween.