Abstract:
Provided are magnetically actuated wafer chucks that permit a wafer to be clamped or undamped at any time during a process and at any rotational speed, as desired. Such wafer chucks may include constraining members that are movable between open and closed positions. In a closed position, a constraining member aligns the wafer after wafer handoff and/or clamps the wafer during rotation to prevent it from flying off the chuck. In an open position, the constraining member moves away from the wafer to allow liquid etchant to flow from the wafer edge without obstruction. The constraining members may be, for example, cams, attached to arms or links of the chuck. The cams or other constraining members move between open and closed positions by self-balancing forces including a first force, such as a spring force, that acts to move a cam in a first direction, and a non-contact actuate-able force, such as a magnetic force, that acts to move the cam in the opposite direction. The resulting cam motion is smooth and continuous.
Abstract:
Provided are magnetically actuated wafer chucks that permit a wafer to be clamped or unclamped at any time during a process and at any rotational speed, as desired. Such wafer chucks may include constraining members that are movable between open and closed positions. In a closed position, a constraining member aligns the wafer after wafer handoff and/or clamps the wafer during rotation to prevent it from flying off the chuck. In an open position, the constraining member moves away from the wafer to allow liquid etchant to flow from the wafer edge without obstruction. The constraining members may be, for example, cams, attached to arms or links of the chuck. The cams or other constraining members move between open and closed positions by self-balancing forces including a first force, such as a spring force, that acts to move a cam in a first direction, and a non-contact actuate-able force, such as a magnetic force, that acts to move the cam in the opposite direction. The resulting cam motion is smooth and continuous.
Abstract:
A method and apparatus for measuring and controlling the diameter of a silicon single crystal ingot grown by the Czochralski technique using dual optical cameras focused on diametrically opposed edges of the meniscus of the growing crystal to measure the actual crystal diameter. The crystal growth parameters can be adjusted in response to the measured diameter to maintain a constant, desired diameter. The method and apparatus of the invention provide a continuous accurate measurement of the crystal diameter and avoid unnecessary adjustments to the crystal growth conditions resulting from diameter measurement errors due to the effects of crystal orbit, melt level changes and camera angle variations.
Abstract:
A rotatable wafer chuck includes chuck arms and wafer holders that are aerodynamically shaped to reduce turbulence during rotation. A wafer holder may include a friction support and an independently rotatable vertical alignment member and clamping member that is shaped to reduce drag. The shape reduces turbulence during edge bevel etching to improve the uniformity of the edge exclusion and during high-speed rotation to improve particle performance.