Abstract:
The present invention relates to a method for compensating for a wavelength mismatch between a readout reference beam and a recording reference beam in a holographic storage system, and to a holographic storage system implementing the method.According to the invention, the wavelength mismatch is determined and the direction of at least part of the readout reference beam relative to a holographic storage medium is adjusted in dependence on the determined wavelength mismatch by defocusing the readout reference beam or by adjusting the focal length of an objective lens for focusing the readout reference beam into the holographic storage medium.
Abstract:
A holographic storage system having an improved data page quality is described. The holographic storage system includes a special optical filter or a special light source for emphasizing the high frequency components of a reference beam and/or an object beam. This is achieved by an optical filter arranged in a Fourier plane, which has a higher attenuation at the center than at the edge. Alternatively, an adapted light source for generating the reference beam and/or the object beam is arranged in a Fourier plane. The light beam emitted by the light source has a higher intensity close to the edge than at the center.
Abstract:
A method for compensating for a wavelength mismatch between a readout reference beam and a recording reference beam in a holographic storage system is described. In order to compensate for a wavelength mismatch in a first step the wavelength mismatch is determined. In a second step the direction of at least part of the readout reference beam is adjusted relative to a holographic storage medium in dependence on the determined wavelength mismatch by defocusing the readout reference beam or by adjusting the focal length of an objective lens for focusing the readout reference beam into the holographic storage medium.
Abstract:
The present invention relates to a phase mask for holographic data storage, and to a method and an apparatus for reading from and/or writing to holographic storage media using such a phase mask.According to the invention, the phase mask has a plurality of phase cells, whose size is equal to an integer multiple of the size of the pixels of a spatial light modulator of the apparatus. The phase cells have a phase variation on sub-cell scale, which is inverse for essentially half the number of phase cells.
Abstract:
A data page for use in a holographic data storage system, and to a method and an apparatus for writing to holographic storage media using such a data page are described. The data page has dark zones for each boundary between phase blocks of a phase mask of the holographic data storage system, which consist of switched-off pixels that are not used for encoding data, and which coincide with the boundaries between the phase blocks.
Abstract:
A holographic storage system having an improved data page quality is described. The holographic storage system includes a special optical filter or a special light source for emphasizing the high frequency components of a reference beam and/or an object beam. This is achieved by an optical filter arranged in a Fourier plane, which has a higher attenuation at the center than at the edge. Alternatively, an adapted light source for generating the reference beam and/or the object beam is arranged in a Fourier plane. The light beam emitted by the light source has a higher intensity close to the edge than at is the center.
Abstract:
Holographic storage system with multiple reference beams An apparatus for reading from and/or writing to holographic storage media is described, and more specifically an apparatus for reading from and/or writing to holographic storage media with two or more reference beams that overlap inside the holographic storage medium for reading and/or writing a single hologram. The two or more reference beams are mutually incoherent during reading and/or writing.
Abstract:
An apparatus for reading from and/or writing to holographic storage media is described, and more specifically an apparatus for reading from and/or writing to holographic storage media with two or more reference beams that overlap inside the holographic storage medium for reading and/or writing a single hologram. The two or more reference beams are mutually incoherent during reading and/or writing.
Abstract:
The present invention relates to a phase mask for holographic data storage, and to a method and an apparatus for reading from and/or writing to holographic storage media using such a phase mask.According to the invention, the phase mask has a plurality of phase cells, whose size is equal to an integer multiple of the size of the pixels of a spatial light modulator of the apparatus. The phase cells have a phase variation on sub-cell scale, which is inverse for essentially half the number of phase cells.
Abstract:
A data page for use in a holographic data storage system, and to a method and an apparatus for writing to holographic storage media using such a data page are described. The data page has dark zones for each boundary between phase blocks of a phase mask of the holographic data storage system, which consist of switched-off pixels that are not used for encoding data, and which coincide with the boundaries between the phase blocks.