Abstract:
For measuring the frequency bandwidth of a signal-processing circuit with minimal external influences, a measuring circuit for a signal-processing circuit (1), arranged on an integrated circuit, for processing at least a picture signal is characterized in that measuring pulses are applied to the signal-processing circuit (1), in that the measuring circuit changes the charge of a capacitance (10) arranged in the measuring circuit, dependent on the time shift experienced by the measuring pulses in the signal-processing circuit (1), in that the measuring circuit switches the measuring capacitance (10) before each measuring process to a reference potential for a short time by means of an electronic switch (8), and in that the measuring circuit is arranged on the same integrated circuit as the signal-processing circuit (1) and is activated only during a measuring process.
Abstract:
A safety cabinet has a plurality of walls defining a front open side and a pair of doors pivotal about respective horizontally spaced axes on the walls between a closed and an open position. Guides in the cabinet are each associated with a respective one of the doors, and respective links each have a front end connected to a respective one of the doors and a rear end shiftable front-to-back in a respective one of the guides. A connector extends between the rear ends of the links and shifts front-to-back with them. A closer is operatively engageable with the connector, and a spring applies bears on the closer to urge it against the connector for pushing same into the rear end position and closing the doors. An actuator normally holds the closer out of engagement with the connector during movement of same between the front and rear end positions.
Abstract:
A circuit for level adaptation between an I.sup.2 L circuit and a preceding combinatory logic circuit. The input current for the I.sup.2 L circuit is supplied by a direct current source which is connected to several switches which are controlled by the level on the output of the combinatory logic circuit, at least one of the outputs thereof being connected to an input of the I.sup.2 L circuit via a current mirror.
Abstract:
The specification describes an electronic timepiece with a display device, with an oscillator as a time base, with a frequency divider, which steps down the frequency of the oscillator to the desired clock frequency, with counting means for counting the clock pulses and with decoding circuits, which present the clock pulses to the display device in the clock pulse frequency in such a manner that in the rhythm of this clock pulse frequency time marks are inserted. The counting means consist of a forward-backward counter and a following simple counter, which on a complete operational cycle runs completely through the number of time marks completely. The outputs of the decoding device of the simple counter are connected respectively with the one electrode of one respective group of time marks. The outputs of the decoding device of the forward-backward counter are connected with the other electrode of one number of time marks corresponding to the number of outputs, and the following time marks are so connected with these time marks that the time marks following the time mark connected with the last output of the decoding device are respectively connected with the outputs of the decoding device in a reversed sequence and this coupling of the time marks is continued until coverage of the number of time marks has been completed.
Abstract:
An electronic timepiece with a display device, with an oscillator as a time base, with a frequency divider, which steps down the frequency of the oscillator to the desired clock frequency, with counting means for counting the clock pulses, and with decoding circuits. The display is a matrix of electrodes positioned to define time marks and actuated by signals from the decoding circuits. The one set of electrodes of the time marks are lines and the other set of electrodes of the time marks are columns of a matrix-like arrangement and the product of the number of lines and the number of columns is equal to the number of the time marks employed. Upon driving the lines and the columns only one respective time mark responds. The lines are constructed as concentric rings and the columns of the matrix-like arrangement are constructed as ring sections concentric to them. The rings and the ring sections together with the connections, arranged concentrically with respect to them, for one respective electrode of the time marks are printed on an insulating carrier and the rings with the corresponding connections for the time marks are connected over the other rings and insulated from them.