摘要:
A test apparatus for testing electrical parameters of a target chip includes: a function generator; a switch matrix module; a plurality of source measurement units (SMUs); at least one of the SMUs is configured to provide power supply for the target chip; at least one of the SMUs is coupled to the switch matrix module; and at least two of said SMUs are test SMUs coupled to ports of the target chip and the function generator.
摘要:
A test apparatus for testing electrical parameters of a target chip includes: a function generator; a switch matrix module; a plurality of source measurement units (SMUs); at least one of the SMUs is configured to provide power supply for the target chip; at least one of the SMUs is coupled to the switch matrix module; and at least two of said SMUs are test SMUs coupled to ports of the target chip and the function generator.
摘要:
A method of testing an integrated circuit device, which involves receiving, by a processor, a test definition indicating a sequence of acts to be performed by an automated test equipment in testing an integrated circuit device. The test definition includes indications of test cycles and timings of events in the cycles. The method includes scanning the received test definition, by the processor, for switch time points for which a timing of events in a first cycle immediately preceding the switch time point is different from a timing of events in a second cycle immediately following the switch time point, determining problematic switch time points for which the combined rest duration from a specific event in the first cycle to a corresponding specific event in the second cycle is shorter than a minimal switch period of the automated test equipment, changing the received test definition by extending a length of the cycles immediately preceding the determined problematic switch time points and providing the changed test definition for testing the integrated circuit device by the automated test equipment.
摘要:
A delay circuit contains a first inversion circuit including a pull-up circuit and a pull-down circuit, and a second inversion circuit including a pull-up circuit and a pull-down circuit. The delay circuit further contains a first pass transistor connected in series to the pull-up circuit in the first inversion circuit between a power supply potential and an output node, a second pass transistor connected in series to the pull-down circuit in the first inversion circuit between a ground potential and the output node, a third pass transistor connected in series between the input node and the pull-up circuit in the second inversion circuit, and a fourth pass transistor connected in series between the input node and the pull-down circuit in the second inversion circuit. A delay characteristic of the delay circuit is changed by a combination of control signals applied to gates of the pass transistors.
摘要:
Systems and methods for optimizing timing/power risk SVB using a customer-supplied, non-linear voltage slope. Chips are manufactured according to an integrated circuit design. The minimum operating voltage and hardware variations for each device in the design is determined and a process distribution for the chips is divided into process windows. Vmax and Vmin to support system frequency are determined for each process window. Vmin vs. process-bin mean and sigma sensitivity is calculated using information about specific devices. The voltage for each process window that generates Vmin for specific devices is identified. Power at the slow end and fast end of each process window is evaluated using the voltage to support system frequency. Pmax is determined. Vmax for each process window that generates Pmax is determined. A voltage is identified between Vmin and Vmax that maximizes the timing margin for system frequency while minimizing risk for Pmax. The chips are sorted into different process windows, based on the voltage identified.
摘要:
A detection circuit for a relative error voltage, including: a first current mirror, a second current mirror, a third current mirror, a current sink and resistors R1, R2 and R3. A voltage signal to be detected V1 accesses the first current mirror via the resistor R2, and a voltage signal to be detected V2 accesses the second current mirror via the resistor R3; a mirrored-end of the first current mirror is connected to the current sink, and a mirroring-end thereof is connected to a mirrored-end of the third current mirror; a mirrored-end of the second current mirror is connected to the current sink, and a mirroring-end thereof is connected to a mirroring-end of the third current mirror; the current sink is grounded via the resistor R1; and the third current mirror converts double-ended currents of the first and the second current mirrors to single-ended currents to output as voltage signals.
摘要:
Circuits are provided for modeling and characterizing the switching of magnetic tunnel junctions (MTJ) elements. More specifically, ring oscillators loaded with MTJ elements are used to characterize magnetic tunnel junction (MTJ) element performance. The circuits can include a ring oscillator (RO) having an odd number of inverters connected in series with a magnetic tunnel junction (MTJ) element inserted between each inverter. In some embodiments, the magnetic tunnel junction (MTJ) elements are arranged to act as a load to the inverters. The circuits optionally include one or more of a time to amplitude converter, a pulse distribution analyzer and/or PFET(s) and NFET(s). Methods of characterizing the switching characteristics of MTJ elements are also provided herein. Such MTJ elements can be suitable for use in magnetoresistive random access memory (MRAM) devices. Methods of making the ring oscillator are further provided herein.
摘要:
A semiconductor apparatus includes: a slave chip including a signal transfer unit configured to determine whether or not to transfer an input signal in response to a chip select signal; a master chip including a replica circuit unit having the same configuration as the signal transfer unit and a signal output unit configured to receive an output signal of the signal transfer unit and an output signal of the to replica circuit unit and generate an output signal in response to the control signal; a first through-chip via vertically formed through the slave chip, and having one end connected to the master chip to receive the input signal and the other end connected to the signal transfer unit; and a second through-chip via vertically formed is through the slave chip, and having one end connected to the signal transfer unit and the other end connected to the signal output unit.
摘要:
A method and apparatus of a device that performs a generalized moment based variation aware timing analysis on a circuit design is described. The device receives a signal path that traverses a plurality of gates. For each of the plurality of gates, the device retrieves a statistical distribution that represents delay variation at the gate. The statistical distribution for each gate is measured by a number of statistical moments that include higher order statistical moments besides the mean and the standard deviation of the distribution. The device computes statistical moments to represent the timing variation on the signal path by propagating statistical distributions of the gates on the signal path. The device reconstructs a statistical distribution function for timing variation on the signal path based on the computed statistical moments.
摘要:
An impedance analyzer includes: a control voltage generating unit for generating a control voltage that has a predetermined amplitude value; a measuring unit operable to provide an output current, which has an amplitude value corresponding to that of the control voltage, for flowing through first and second body portions of a biological target, and to generate a measurement voltage that has an amplitude value corresponding to a difference between voltages at the first and second body portions attributed to flow of the output current therethrough; and a calculating module operable to determine an electrical impedance between the first and second body portions according to a predetermined adjustment value and the amplitude value of the measurement voltage.