摘要:
A method of making a comparatively small substrate (12) compatible with manufacturing equipment for a larger-size standard substrate is disclosed. The standard substrate (1) has a surface (10) in which a depression (8) is formed, in which depression the small substrate is connected by means of a layer of a bonding material (13). The depression is formed so as to have a flat bottom (9) extending parallel to the surface. The depression has a depth such that, after the small substrate has been connected with its rear side to the bottom of the depression of the standard substrate by means of the layer of bonding material, the front side (14) of the small substrate forms a free surface which practically coincides with the surface (10) of the carrier wafer. When the standard substrate with the small substrate positioned in the depression is placed into a lithographic stepper, the free surface of the small substrate is placed automatically in a position such that patterns having very small dimensions can be projected onto a photoresist layer formed on said free surface.
摘要:
A method of providing an electric device with a vertical component and the device itself are disclosed. The electric device may be a transistor device, such as a FET device, with a vertical channel, such as a gate around transistor, or double-gate transistor First an elongate structure, such as a nanowire is provided to a substrate. Subsequently, a first conductive layer separated from the substrate and from the elongate structure by a dielectric layer is provided. Further, a second conductive layer being separated from the first conductive layer by a separation layer is being provided in contact with at least a top section of the elongate structure.
摘要:
The electronic device comprises a network of at least one thin-film capacitor and at least one inductor on a first side of a substrate of a semiconductor material. The substrate has a resistivity sufficiently high to limit electrical losses of the inductor and being provided with an electrically insulating surface layer on its first side. A first and a second lateral pin diode are defined in the substrate, each of the pin diodes having a doped p-region, a doped n-region and an intermediate intrinsic region. The intrinsic region of the first pin diode is larger than that of the second pin diode.
摘要:
The present invention provides a trench isolation structure, comprising a trench groove (4) in a semiconductor slab (1) with a buried layer (2). The trench groove (4) is lined with first insulating material (5), then filled with a first filler material (6) up to the level of the buried layer. Then second insulating material (7), for example an oxide, is preferably applied in the volume which is surrounded by the buried layer (2). The remaining part of the trench groove (4) is either filled with second filler material (8) or with second insulating material. Said structure provides lower capacitive coupling between buried layer (2) edge and substrate (1), with improved thermal behavior.The invention furthermore provides a semiconductor assembly comprising said trench isolation structure and at least one semiconductor device, as well as a method for forming such a trench isolation structure.
摘要:
The invention relates to a radiation-emitting semiconductor device (10) with a semiconductor body (1) and a substrate (2), wherein the semiconductor body (1) comprises a vertical bipolar transistor with an emitter region (3), a base region (4) and a collector region (5), which regions are each provided with a connection region (6, 7, 8), and the border between the base region (4) and the collector region (5) forms a pn-junction and, in operation, at a reverse bias of the pn-junction or at a sufficiently large collector current, avalanche multiplication of charge carriers occurs whereby radiation is generated in the collector region (5). According to the invention, the collector region (5) has a thickness through which transmission of the generated radiation occurs, and the collector region (5) borders on a free surface of the semiconductor body (1). In this way, less of the generated radiation is lost by absorption and the radiation generated is more readily available to serve as an optical signal for, for example, another part of the device (10) or for another device (10). A second sub-region (5B) in the collector region (5) may be made for example with the aid of a gate electrode (11) with which a conducting channel can be induced in the semiconductor body (1). Preferably, a radiation conductor (14) is present on the surface of the latter. The invention further comprises a method of manufacturing a device (10) according to the invention.