摘要:
A reheat burner (1) includes a channel (2) with a lance (3) protruding thereinto to inject a fuel over an injection plane (4) perpendicular to a channel longitudinal axis (15). The channel (2) and lance (3) define a vortex generation zone (6) upstream of the injection plane (4) and a mixing zone (9) downstream of the injection plane (4) in the hot gas (G) direction. The mixing zone (9) includes a high speed area (16) with a constant cross section, and a diffusion area (17) with a flared cross section downstream of the high speed area (16) in the hot gas (G) direction.
摘要:
A reheat burner includes a channel with a lance projecting thereinto to inject a fuel over an injection plane perpendicular to a channel longitudinal axis. The channel and lance define a vortex generation zone upstream of the injection plane and a mixing zone downstream of the injection plane in the hot gas direction. The mixing zone has a cross section with diverging side walls in the hot gas direction. The diverging side walls define curved surfaces in the hot gas direction having a constant radius.
摘要:
A reheat burner includes a channel with a lance projecting thereinto to inject a fuel over an injection plane perpendicular to a channel longitudinal axis. The channel and lance define a vortex generation zone upstream of the injection plane and a mixing zone downstream of the injection plane in the hot gas direction. The mixing zone has a cross section with diverging side walls in the hot gas direction. The diverging side walls define curved surfaces in the hot gas direction having a constant radius.
摘要:
A reheat burner (1) includes a channel (2) with a lance (3) protruding thereinto to inject a fuel over an injection plane (4) perpendicular to a channel longitudinal axis (15). The channel (2) and lance (3) define a vortex generation zone (6) upstream of the injection plane (4) and a mixing zone (9) downstream of the injection plane (4) in the hot gas (G) direction. The mixing zone (9) includes a high speed area (16) with a constant cross section, and a diffusion area (17) with a flared cross section downstream of the high speed area (16) in the hot gas (G) direction.
摘要:
The burner (1) for a gas turbine includes a duct (2) housing a plurality of tetrahedron shaped vortex generators (3) and a lance (4) to inject a fuel to be combusted. Within the duct (2), a plurality of vortex generators (3) are provided with a plurality of holes (9) for injecting cooling air. The cooling holes (9) define passing through areas that are non-uniformly distributed on a top wall (11) of the vortex generators (3). A method for locally cooling a hot gases flow passing through a burner includes non-uniformly injecting cooling air from a vortex generator into the hot gas flow in the duct, which can reduce the occurrence of flashback in the burner.
摘要:
The burner (1) for a gas turbine includes a duct (2) housing a plurality of tetrahedron shaped vortex generators (3) and a lance (4) to inject a fuel to be combusted. Within the duct (2), a plurality of vortex generators (3) are provided with a plurality of holes (9) for injecting cooling air. The cooling holes (9) define passing through areas that are non-uniformly distributed on a top wall (11) of the vortex generators (3). A method for locally cooling a hot gases flow passing through a burner includes non-uniformly injecting cooling air from a vortex generator into the hot gas flow in the duct, which can reduce the occurrence of flashback in the burner.
摘要:
An exemplary combustor includes at least a portion having an inner liner and an outer cover plate, which together form an interposed cooling chamber. A plurality of hollow elements extend from the liner and protrude into the cooling chamber. Each hollow element defines a damping volume connected to an inner volume of the combustion chamber via a calibrated duct. During operation, the hollow elements damp pressure pulsations and, in addition, also transfer heat.
摘要:
A fuel lance for a gas turbine installation with sequential combustion, in which hot gas is produced in a first combustion chamber and expanded in a subsequent turbine, and then flows through a subsequent second combustion chamber in which the fuel lance for injecting fuel into the hot gas is arranged. The fuel lance has a lance section which extends in the flow direction of the hot gas and includes at least an outer tube which is arranged concentrically to a lance axis, and a center tube which is concentrically arranged in the outer tube and in which the fuel is guided to the lance tip and is injected through first injection openings in the region of the lance tip into the hot gas. The fuel lance is modified for operation with syngas by the first injection openings being arranged directly on the lance tip, and by the first injection openings being oriented so that the fuel jets which emerge from them include an acute angle with the lance axis.
摘要:
A fuel lance for a gas turbine installation with sequential combustion, in which hot gas is produced in a first combustion chamber and expanded in a subsequent turbine, and then flows through a subsequent second combustion chamber in which the fuel lance for injecting fuel into the hot gas is arranged. The fuel lance has a lance section which extends in the flow direction of the hot gas and includes at least an outer tube which is arranged concentrically to a lance axis, and a center tube which is concentrically arranged in the outer tube and in which the fuel is guided to the lance tip and is injected through first injection openings in the region of the lance tip into the hot gas. The fuel lance is modified for operation with syngas by the first injection openings being arranged directly on the lance tip, and by the first injection openings being oriented so that the fuel jets which emerge from them include an acute angle with the lance axis.
摘要:
An exemplary combustor includes at least a portion having an inner liner and an outer cover plate, which together form an interposed cooling chamber. A plurality of hollow elements extend from the liner and protrude into the cooling chamber. Each hollow element defines a damping volume connected to an inner volume of the combustion chamber via a calibrated duct. During operation, the hollow elements damp pressure pulsations and, in addition, also transfer heat.