摘要:
A reheat burner (1) includes a channel (2) with a lance (3) protruding thereinto to inject a fuel over an injection plane (4) perpendicular to a channel longitudinal axis (15). The channel (2) and lance (3) define a vortex generation zone (6) upstream of the injection plane (4) and a mixing zone (9) downstream of the injection plane (4) in the hot gas (G) direction. The mixing zone (9) includes a high speed area (16) with a constant cross section, and a diffusion area (17) with a flared cross section downstream of the high speed area (16) in the hot gas (G) direction.
摘要:
A reheat burner includes a channel with a lance projecting thereinto to inject a fuel over an injection plane perpendicular to a channel longitudinal axis. The channel and lance define a vortex generation zone upstream of the injection plane and a mixing zone downstream of the injection plane in the hot gas direction. The mixing zone has a cross section with diverging side walls in the hot gas direction. The diverging side walls define curved surfaces in the hot gas direction having a constant radius.
摘要:
A reheat burner includes a channel with a lance projecting thereinto to inject a fuel over an injection plane perpendicular to a channel longitudinal axis. The channel and lance define a vortex generation zone upstream of the injection plane and a mixing zone downstream of the injection plane in the hot gas direction. The mixing zone has a cross section with diverging side walls in the hot gas direction. The diverging side walls define curved surfaces in the hot gas direction having a constant radius.
摘要:
A reheat burner (1) includes a channel (2) with a lance (3) protruding thereinto to inject a fuel over an injection plane (4) perpendicular to a channel longitudinal axis (15). The channel (2) and lance (3) define a vortex generation zone (6) upstream of the injection plane (4) and a mixing zone (9) downstream of the injection plane (4) in the hot gas (G) direction. The mixing zone (9) includes a high speed area (16) with a constant cross section, and a diffusion area (17) with a flared cross section downstream of the high speed area (16) in the hot gas (G) direction.
摘要:
The burner (1) for a gas turbine includes a duct (2) housing a plurality of tetrahedron shaped vortex generators (3) and a lance (4) to inject a fuel to be combusted. Within the duct (2), a plurality of vortex generators (3) are provided with a plurality of holes (9) for injecting cooling air. The cooling holes (9) define passing through areas that are non-uniformly distributed on a top wall (11) of the vortex generators (3). A method for locally cooling a hot gases flow passing through a burner includes non-uniformly injecting cooling air from a vortex generator into the hot gas flow in the duct, which can reduce the occurrence of flashback in the burner.
摘要:
The burner (1) for a gas turbine includes a duct (2) housing a plurality of tetrahedron shaped vortex generators (3) and a lance (4) to inject a fuel to be combusted. Within the duct (2), a plurality of vortex generators (3) are provided with a plurality of holes (9) for injecting cooling air. The cooling holes (9) define passing through areas that are non-uniformly distributed on a top wall (11) of the vortex generators (3). A method for locally cooling a hot gases flow passing through a burner includes non-uniformly injecting cooling air from a vortex generator into the hot gas flow in the duct, which can reduce the occurrence of flashback in the burner.
摘要:
An exemplary burner of a gas turbine includes a tubular body with an inlet for an entrance of an air flow, downstream of inlet vortex generators, and a lance projecting into the tubular body and having a terminal portion extending along a longitudinal axis of the burner which is provided with nozzle groups for injecting fuel into the tubular body. The nozzle groups can lay in an injection plane perpendicular to the axis of the terminal portion of the lance. Downstream of the lance, the burner has an outlet. A ratio x/L between an axial distance x between the side trailing edge of the vortex generator and the injection plane, and the length L of the tubular body can be less than approximately 0.1052.
摘要:
The lance of a burner includes a body that defines a first duct with first nozzles for injecting a liquid fuel and a second duct with second nozzles for injecting a gaseous fuel. Outlets of the first nozzles are spaced apart from outlets of the second nozzles. The body includes a third duct with third and fourth nozzles for injecting air. The third nozzles surround an axis of the first nozzles and the fourth nozzles surround an axis of the second nozzles.
摘要:
A burner, such as for a secondary combustion chamber of a gas turbine with sequential combustion having first and second combustion chambers, includes an injection device for introducing at least one gaseous fuel into the burner. The injection device has at least one body which is arranged in the burner with at least one nozzle for introducing the gaseous fuel into the burner. The body is configured as a streamlined body which has a streamlined cross-sectional profile and which extends with a longitudinal direction perpendicularly or at an inclination to a main flow direction prevailing in the burner. The at least one nozzle has its outlet orifice at or in a trailing edge of the streamlined body. The body has two lateral surfaces substantially parallel to the main flow direction. At least one vortex generator is located on at least one lateral surface upstream of the at least one nozzle.
摘要:
An exemplary burner arrangement and method for operating a burner arrangement are disclosed. During operation of the burner arrangement a hot combustion gas, including combustion air, flows essentially parallel to a burner wall through a mixing chamber, which is delimited by the burner wall, to a combustion chamber. In the mixing chamber the hot combustion gas is mixed with an injected fuel, where cooling air from the outside of the burner wall flows through effusion holes in the burner wall into an interior of the mixing chamber. The cooling air, on the outside of the burner wall, is deflected in a directed manner in its flow direction by means of deflection elements which are in a distributed arrangement.