摘要:
An apparatus and method for introducing material into an injection site of a patient is disclosed. The device includes a cannula and a carrier. The cannula is inserted into an injection site of a patient. The carrier is connected to an injector containing a volume of material. Material may be pre-loaded into the carrier so that the material is delivered to a distal end of the carrier from the injector and the carrier is thus pre-loaded with material. A portion of the distal end of the pre-loaded carrier is inserted into the cannula and material is delivered to an injection site. The supply section can be rotatable with respect to the longitudinal axis of the inner section.
摘要:
A curable material delivery cannula device is disclosed. The device includes a cannula and a hub. The cannula includes an open proximal end, a deflectable segment forming a pre-set curve, a lumen, and side orifice(s) adjacent, and proximally spaced from, the distal end and fluidly connected to the lumen. When inserted within a guide cannula, the deflectable segment straightens. When distally extended from the guide cannula, the deflectable segment reverts to the curved shape. The distal end has a blunt tip for non-traumatic interface with bodily material. During use, curable material, such as bone cement, is delivered from the side orifice(s) in a radial direction relative to the lumen.
摘要:
A curable material delivery cannula device and method are disclosed. The device includes a cannula and a hub. The cannula includes an open proximal end, a deflectable segment forming a pre-set curve, a lumen, and side orifice(s) adjacent, and proximally spaced from, the distal end and fluidly connected to the lumen. When inserted within a guide cannula, the deflectable segment straightens. When distally extended from the guide cannula, the deflectable segment reverts to the curved shape, which may be used to create a void in the bone for receiving curable material. The distal end has a blunt tip for non-traumatic interface with bodily material. During use, curable material, such as bone cement, is delivered from the side orifice(s) in a radial direction relative to the lumen.
摘要:
A curable material delivery cannula device is disclosed. The device includes a cannula and a hub. The cannula includes an open proximal end, a deflectable segment forming a pre-set curve, a lumen, and side orifice(s) adjacent, and proximally spaced from, the distal end and fluidly connected to the lumen. When inserted within a guide cannula, the deflectable segment straightens. When distally extended from the guide cannula, the deflectable segment reverts to the curved shape. The distal end has a blunt tip for non-traumatic interface with bodily material. During use, curable material, such as bone cement, is delivered from the side orifice(s) in a radial direction relative to the lumen. The device may be used to create voids for receiving curable material, and may include spacers configured to control location and/or orientation of the voids.
摘要:
A curable material delivery cannula device is disclosed. The device includes a cannula and a hub. The cannula includes an open proximal end, a deflectable segment forming a pre-set curve, a lumen, and side orifice(s) adjacent, and proximally spaced from, the distal end and fluidly connected to the lumen. When inserted within a guide cannula, the deflectable segment straightens. When distally extended from the guide cannula, the deflectable segment reverts to the curved shape. The distal end has a blunt tip for non-traumatic interface with bodily material. During use, curable material, such as bone cement, is delivered from the side orifice(s) in a radial direction relative to the lumen. The device may be used to create voids for receiving curable material, and may include spacers configured to control location and/or orientation of the voids.
摘要:
A curable material delivery cannula device is disclosed. The device includes a cannula and a hub. The cannula includes an open proximal end, a deflectable segment forming a pre-set curve, a lumen, and side orifice(s) adjacent, and proximally spaced from, the distal end and fluidly connected to the lumen. When inserted within a guide cannula, the deflectable segment straightens. When distally extended from the guide cannula, the deflectable segment reverts to the curved shape. The distal end has a blunt tip for non-traumatic interface with bodily material. During use, curable material, such as bone cement, is delivered from the side orifice(s) in a radial direction relative to the lumen.
摘要:
A curable material delivery cannula device and method are disclosed. The device includes a cannula and a hub. The cannula includes an open proximal end, a deflectable segment forming a pre-set curve, a lumen, and side orifice(s) adjacent, and proximally spaced from, the distal end and fluidly connected to the lumen. When inserted within a guide cannula, the deflectable segment straightens. When distally extended from the guide cannula, the deflectable segment reverts to the curved shape, which may be used to create a void in the bone for receiving curable material. The distal end has a blunt tip for non-traumatic interface with bodily material. During use, curable material, such as bone cement, is delivered from the side orifice(s) in a radial direction relative to the lumen.
摘要:
A method for stabilizing fractured bone structure having a fractured height includes expanding the bone structure to a restored height greater than the fractured height by transitioning an expandable member inserted into the bone structure from a contracted state to an expanded state. A curable material is delivered into a cavity formed in the bone structure and allowed to harden while the expandable member maintains the bone structure at the restored height. The expandable member is then removed from the bone structure.
摘要:
A method for stabilizing a bone structure including directing first and second expandable members in contracted state to a first location within the bone structure. The expandable members are expanded, forming first and second cavities within the bone structure. The first expandable member is then transitioned back to the contracted state while maintaining the second expandable member in the expanded state. The first expandable member is removed, and curable material delivered into the first cavity. The second expandable structure is contracted and removed. A curable material is delivered into the second cavity. A height of the bone structure is restored via expansion of the two expandable members, and is retained throughout the procedure first by the second expandable member during delivery of curable material into the first cavity, and then by the hardened material in the first cavity during removal of the second expandable member.