Periodic superchannel carrier arrangement for optical communication systems

    公开(公告)号:US09900124B2

    公开(公告)日:2018-02-20

    申请号:US13078895

    申请日:2011-04-01

    Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit node of an optical communication system, is processed and then output to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data, forming a plurality of corresponding carriers. The plurality of wavelengths used for the plurality of carriers are spectrally spaced apart by a common, periodic fixed spacing. The plurality of carriers are optically combined with a fixed spacing combiner to form a superchannel. A plurality of superchannels are generated and then multiplexed together onto an optical communication path and transmitted to a receive node. Each superchannel includes a plurality of carriers, each spectrally separated by the same fixed spacing. The plurality of superchannels are spectrally separated by an amount corresponding to the fixed spacing of the plurality of carriers. At the receive node, the superchannels are optically demultiplexed, and the plurality of carriers of a respective superchannel are then supplied to a photodetector circuit, which receives additional light at one of the optical signal carrier wavelengths from a local oscillator laser. The resultant signals are then processed electronically to separate the individual carriers and output data corresponding to the input data.

    Apparatus to control carrier spacing in a multi-carrier optical transmitter
    2.
    发明授权
    Apparatus to control carrier spacing in a multi-carrier optical transmitter 有权
    用于控制多载波光发射机中的载波间隔的装置

    公开(公告)号:US09124371B2

    公开(公告)日:2015-09-01

    申请号:US13078890

    申请日:2011-04-01

    CPC classification number: H04B10/506 H04B10/572 H04J14/02

    Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit node of an optical communication system, and is then provided to a modulator that, in turn, modulates light, received from an optical source at one of a plurality of periodically and preferably minimally spaced wavelengths. The plurality of periodically spaced wavelengths or carriers are grouped together with minimal carrier spacing, to form a superchannel. The carrier spacing between adjacent carriers is determined by detecting a beat frequency of a combined optical signal that includes the outputs of two adjacent optical sources. The beat frequency corresponds to a frequency difference between the outputs of the adjacent carriers. This frequency difference should correspond to a desired carrier spacing between each of the plurality of carriers. A frequency error between the beat frequency and the desired carrier spacing is then measured by down-converting the beat frequency with respect to a target reference frequency corresponding to the desired carrier frequency spacing. Based on the determined frequency error, the optical sources are controlled to adjust in frequency to minimize or reduce the frequency error to zero. For every pair of adjacent carriers, the corresponding outputs of the optical sources are compared in the above manner to determine a plurality of frequency errors. Each optical source can thus be tuned in order to realize a precise carrier spacing between each of the adjacent carriers.

    Abstract translation: 与本公开一致,数字形式的数据由光通信系统的发射节点接收,然后被提供给调制器,调制器进而调制从光源以多个 周期性和优选地最小间隔的波长。 多个周期性间隔的波长或载波以最小载波间隔分组在一起以形成超频道。 通过检测包括两个相邻光源的输出的组合光信号的拍频来确定相邻载波之间的载波间隔。 节拍频率对应于相邻载波的输出之间的频率差。 该频率差应对应于多个载波中的每一个之间的期望载波间隔。 然后通过相对于对应于所需载波频率间隔的目标参考频率下变频拍频来测量拍频和所需载波间隔之间的频率误差。 基于确定的频率误差,控制光源的频率以使频率误差最小化或将频率误差降低到零。 对于每对相邻载波,以上述方式比较光源的相应输出以确定多个频率误差。 因此,可以调整每个光源以便在每个相邻载体之间实现精确的载波间隔。

    Periodic Superchannel Carrier Arrangement for Optical Communication Systems
    3.
    发明申请
    Periodic Superchannel Carrier Arrangement for Optical Communication Systems 有权
    光通信系统的定期超信道载波布置

    公开(公告)号:US20120251121A1

    公开(公告)日:2012-10-04

    申请号:US13078895

    申请日:2011-04-01

    Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit node of an optical communication system, is processed and then output to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data, forming a plurality of corresponding carriers. The plurality of wavelengths used for the plurality of carriers are spectrally spaced apart by a common, periodic fixed spacing. The plurality of carriers are optically combined with a fixed spacing combiner to form a superchannel. A plurality of superchannels are generated and then multiplexed together onto an optical communication path and transmitted to a receive node. Each superchannel includes a plurality of carriers, each spectrally separated by the same fixed spacing. The plurality of superchannels are spectrally separated by an amount corresponding to the fixed spacing of the plurality of carriers. At the receive node, the superchannels are optically demultiplexed, and the plurality of carriers of a respective superchannel are then supplied to a photodetector circuit, which receives additional light at one of the optical signal carrier wavelengths from a local oscillator laser. The resultant signals are then processed electronically to separate the individual carriers and output data corresponding to the input data.

    Abstract translation: 根据本公开,数字形式的数据由光通信系统的发射节点接收,被处理并随后输出以驱动调制器。 调制器又根据接收的数据调制多个波长中的一个的光,形成多个对应的载波。 用于多个载波的多个波长通过共同的周期性固定间隔进行光谱间隔。 多个载波与固定间隔组合器光学组合以形成超声道。 生成多个超通道,然后一起多路复用到光通信路径上并发送到接收节点。 每个超级通道包括多个载体,每个载流子以相同的固定间隔进行光谱分离。 多个超通道被频谱地分开与多个载波的固定间隔对应的量。 在接收节点处,超级信道被光解复用,然后将相应超级信道的多个载波提供给光电检测器电路,光电检测器电路接收来自本地振荡器激光器的光信号载波波长之一的附加光。 然后,所得到的信号被电子地处理以分离各个载波并输出对应于输入数据的数据。

    Apparatus to Control Carrier Spacing in a Multi-Carrier Optical Transmitter
    4.
    发明申请
    Apparatus to Control Carrier Spacing in a Multi-Carrier Optical Transmitter 有权
    用于控制多载波光发射机中载波间隔的装置

    公开(公告)号:US20120251101A1

    公开(公告)日:2012-10-04

    申请号:US13078890

    申请日:2011-04-01

    CPC classification number: H04B10/506 H04B10/572 H04J14/02

    Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit node of an optical communication system, and is then provided to a modulator that, in turn, modulates light, received from an optical source at one of a plurality of periodically and preferably minimally spaced wavelengths. The plurality of periodically spaced wavelengths or carriers are grouped together with minimal carrier spacing, to form a superchannel. The carrier spacing between adjacent carriers is determined by detecting a beat frequency of a combined optical signal that includes the outputs of two adjacent optical sources. The beat frequency corresponds to a frequency difference between the outputs of the adjacent carriers. This frequency difference should correspond to a desired carrier spacing between each of the plurality of carriers. A frequency error between the beat frequency and the desired carrier spacing is then measured by down-converting the beat frequency with respect to a target reference frequency corresponding to the desired carrier frequency spacing. Based on the determined frequency error, the optical sources are controlled to adjust in frequency to minimize or reduce the frequency error to zero. For every pair of adjacent carriers, the corresponding outputs of the optical sources are compared in the above manner to determine a plurality of frequency errors. Each optical source can thus be tuned in order to realize a precise carrier spacing between each of the adjacent carriers.

    Abstract translation: 与本公开一致,数字形式的数据由光通信系统的发射节点接收,然后被提供给调制器,调制器进而调制从光源以多个 周期性和优选地最小间隔的波长。 多个周期性间隔的波长或载波以最小载波间隔分组在一起以形成超频道。 通过检测包括两个相邻光源的输出的组合光信号的拍频来确定相邻载波之间的载波间隔。 节拍频率对应于相邻载波的输出之间的频率差。 该频率差应对应于多个载波中的每一个之间的期望载波间隔。 然后通过相对于对应于所需载波频率间隔的目标参考频率下变频拍频来测量拍频和所需载波间隔之间的频率误差。 基于确定的频率误差,控制光源的频率以使频率误差最小化或将频率误差降低到零。 对于每对相邻载波,以上述方式比较光源的相应输出以确定多个频率误差。 因此,可以调整每个光源以便在每个相邻载体之间实现精确的载波间隔。

    Banded semiconductor optical amplifier
    5.
    发明授权
    Banded semiconductor optical amplifier 有权
    带状半导体光放大器

    公开(公告)号:US08964284B2

    公开(公告)日:2015-02-24

    申请号:US13449515

    申请日:2012-04-18

    Abstract: A semiconductor optical amplifier module may include a beam splitter to split an optical signal into two polarization optical signals including a first polarization optical signal with a Transverse Magnetic (TM) polarization provided along a first path of two paths, and a second polarization optical signal with a Transverse Electric (TE) polarization provided along a second path of the two paths; a first rotator to rotate the TM polarization of the first polarization optical signal to TE polarization; a first semiconductor optical amplifier to amplify the rotated first polarization optical signal to output a first resultant optical signal; a second semiconductor optical amplifier to amplify the second polarization optical signal; and a second rotator to rotate the polarization of the amplified second polarization optical signal to output a second resultant optical signal; and a beam combiner to combine the first resultant optical signal and the second resultant optical signal.

    Abstract translation: 半导体光放大器模块可以包括光束分离器,以将光信号分成两个偏振光信号,包括具有沿着两条路径的第一路径提供的横向磁(TM)偏振的第一偏振光信号,以及第二偏振光信号, 沿着两个路径的第二路径提供的横向电(TE)极化; 第一旋转器,用于将第一偏振光信号的TM偏振旋转为TE极化; 第一半导体光放大器,用于放大旋转的第一偏振光信号以输出第一合成光信号; 第二半导体光放大器,用于放大第二偏振光信号; 以及第二旋转器,用于旋转放大的第二偏振光信号的偏振,以输出第二合成光信号; 以及光束组合器,以组合第一合成光信号和第二合成光信号。

    Monitoring system employing carrier recovery
    6.
    发明授权
    Monitoring system employing carrier recovery 有权
    采用载波恢复的监控系统

    公开(公告)号:US08611744B2

    公开(公告)日:2013-12-17

    申请号:US12982933

    申请日:2010-12-31

    CPC classification number: H04B10/0795

    Abstract: The present disclosure provides a system, apparatus and method to provide for monitoring of characteristics of optical signals, as part of wavelength division multiplexed signals for example, transmitted over a network infrastructure. The characteristics of each optical signal may be monitored and maintained at desired values in order to optimize system performance. A system including a coherent detector, as part of a coherent receiver for example, may be employed to associate each transmitted optical signal with a modulated source. Control signals generated by the system can then be provided to elements of the modulated source to control characteristics, such as optical power, optical frequency, and optical phase, for example, of the transmitted optical signal.

    Abstract translation: 本公开提供了一种提供用于监视光信号的特性的系统,装置和方法,作为例如通过网络基础设施传输的波分复用信号的一部分。 可以监视每个光信号的特性并将其保持在期望的值,以优化系统性能。 可以采用包括作为例如相干接收机的一部分的相干检测器的系统来将每个发送的光信号与调制源相关联。 然后可以将由系统产生的控制信号提供给调制源的元件,以控制诸如光功率,光频率和例如所发射的光信号的光相位的特性。

    MONITORING SYSTEM EMPLOYING CARRIER RECOVERY
    7.
    发明申请
    MONITORING SYSTEM EMPLOYING CARRIER RECOVERY 有权
    监控系统运行载体恢复

    公开(公告)号:US20120170926A1

    公开(公告)日:2012-07-05

    申请号:US12982933

    申请日:2010-12-31

    CPC classification number: H04B10/0795

    Abstract: The present disclosure provides a system, apparatus and method to provide for monitoring of characteristics of optical signals, as part of wavelength division multiplexed signals for example, transmitted over a network infrastructure. The characteristics of each optical signal may be monitored and maintained at desired values in order to optimize system performance. A system including a coherent detector, as part of a coherent receiver for example, may be employed to associate each transmitted optical signal with a modulated source. Control signals generated by the system can then be provided to elements of the modulated source to control characteristics, such as optical power, optical frequency, and optical phase, for example, of the transmitted optical signal.

    Abstract translation: 本公开提供了一种提供用于监视光信号的特性的系统,装置和方法,作为例如通过网络基础设施传输的波分复用信号的一部分。 可以监视每个光信号的特性并将其保持在期望的值,以优化系统性能。 可以采用包括作为例如相干接收机的一部分的相干检测器的系统来将每个发送的光信号与调制源相关联。 然后可以将由系统产生的控制信号提供给调制源的元件,以控制诸如光功率,光频率和例如所发射的光信号的光相位的特性。

    Banded Semiconductor Optical Amplifier
    10.
    发明申请
    Banded Semiconductor Optical Amplifier 有权
    带状半导体光放大器

    公开(公告)号:US20130279910A1

    公开(公告)日:2013-10-24

    申请号:US13449515

    申请日:2012-04-18

    Abstract: A semiconductor optical amplifier module may include a beam splitter to split an optical signal into two polarization optical signals including a first polarization optical signal with a Transverse Magnetic (TM) polarization provided along a first path of two paths, and a second polarization optical signal with a Transverse Electric (TE) polarization provided along a second path of the two paths; a first rotator to rotate the TM polarization of the first polarization optical signal to TE polarization; a first semiconductor optical amplifier to amplify the rotated first polarization optical signal to output a first resultant optical signal; a second semiconductor optical amplifier to amplify the second polarization optical signal; and a second rotator to rotate the polarization of the amplified second polarization optical signal to output a second resultant optical signal; and a beam combiner to combine the first resultant optical signal and the second resultant optical signal.

    Abstract translation: 半导体光放大器模块可以包括光束分离器,以将光信号分成两个偏振光信号,包括具有沿着两条路径的第一路径提供的横向磁(TM)偏振的第一偏振光信号,以及第二偏振光信号, 沿着两个路径的第二路径提供的横向电(TE)极化; 第一旋转器,用于将第一偏振光信号的TM偏振旋转为TE极化; 第一半导体光放大器,用于放大旋转的第一偏振光信号以输出第一合成光信号; 第二半导体光放大器,用于放大第二偏振光信号; 以及第二旋转器,用于旋转放大的第二偏振光信号的偏振,以输出第二合成光信号; 以及光束组合器,以组合第一合成光信号和第二合成光信号。

Patent Agency Ranking