摘要:
An optical transmitter may include an optical source to provide a first optical signal having a varying frequency; an optical circuit to receive a portion of the first optical signal and provide a second optical signal corresponding to a change in frequency of the first optical signal; a photodetector to receive the first optical signal and provide an electrical signal that is indicative of the change in frequency of the first optical signal; an integrator to receive the electrical signal and provide an inverted electrical signal; and a controller to process the inverted electrical signal and provide a current, associated with the inverted electrical signal, to the optical source. The optical source may reduce the phase noise associated with the first optical signal based on the current.
摘要:
Consistent with the present disclosure, data, in digital form, is received by a transmit nodes of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data. The modulated light is then transmitted over an optical communication path to a receive node. At the receive node, the modulated optical signal, as well as other modulated optical signals are supplied to a photodetector circuit, which receives additional light at one of the optical signal wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of individual channels is unnecessary.
摘要:
Consistent with the present disclosure, data, in digital form, is received by a transmit nodes of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data. The modulated light is then transmitted over an optical communication path to a receive node. At the receive node, the modulated optical signal, as well as other modulated optical signals are supplied to a photodetector circuit, which receives additional light at one of the optical signal wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of individual channels is unnecessary.
摘要:
Consistent with the present disclosure, data, in digital form, is received by a transmit nodes of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data. The modulated light is then transmitted over an optical communication path to a receive node. At the receive node, the modulated optical signal, as well as other modulated optical signals are supplied to a photodetector circuit, which receives additional light at one of the optical signal wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of individual channels is unnecessary.
摘要:
A system, method, and apparatus is disclosed for interpolation of an output of an analog to digital converter (ADC) to enable operation of the ADC at a sampling rate that is independent of the sampling rate for a DSP core so as to efficiently enable operation at higher date rates. According to one of the embodiments, an interpolation circuit is coupled between the ADC and DSP core and receives a first plurality of samples of data at the first data rate from the ADC and supplies a plurality of samples of second data at a second data rate to the DSP core; the second data rate being less than the first data rate. According to one of the embodiments, the interpolation circuit includes a memory and a FIR filter circuit having filter tap coefficient values selected to provide attenuation at high frequencies to reduce aliasing noise.
摘要:
A radio access system comprises a base station and a plurality of subscriber locations. The subscriber locations each comprise a residential base unit or subscriber interface which includes line termination equipment. A group of subscribers is served by a pool of residential radio transceiver units in radio communication with the base station which is connected to the residential base units by a shared bus. A group of subscriber locations may be served by a lesser number of residential transceiver units, while at the same time providing individual locations with access to increased bandwidth for ISDN services and the like. Also described is a system in which a subscriber's base unit is connected to two or more residential transceiver units to allow increased bandwidth without requiring additional residential base units.
摘要:
An optical transmitter may include an optical source to provide a first optical signal having a varying frequency; an optical circuit to receive a portion of the first optical signal and provide a second optical signal corresponding to a change in frequency of the first optical signal; a photodetector to receive the first optical signal and provide an electrical signal that is indicative of the change in frequency of the first optical signal; an integrator to receive the electrical signal and provide an inverted electrical signal; and a controller to process the inverted electrical signal and provide a current, associated with the inverted electrical signal, to the optical source. The optical source may reduce the phase noise associated with the first optical signal based on the current.
摘要:
Consistent with the present disclosure, data, in digital form, is received by a transmit nodes of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data. The modulated light is then transmitted over an optical communication path to a receive node. At the receive node, the modulated optical signal, as well as other modulated optical signals are supplied to a photodetector circuit, which receives additional light at one of the optical signal wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of individual channels is unnecessary.
摘要:
Consistent with the present disclosure, data, in digital form, is received by a transmit node of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data forming a plurality of corresponding carriers. The plurality of carriers are then optically combined with a fixed spacing combiner to form a superchannel of a fixed capacity. Accordingly, the number of carriers are selected according to a modulation format and symbol rate to realize the fixed capacity, for example. The superchannel is then transmitted over an optical communication path to a receive node. At the receive node, the superchannel is optically demultiplexed from a plurality of other superchannels. The plurality of carriers are then supplied to a photodetector circuit, which receives additional light at one of the optical signal carrier wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of the carriers is unnecessary.
摘要:
Consistent with the present disclosure, a coherent detector is provided that includes an optical hybrid that supplies optical signals including local oscillator light to a balanced detector. The amount of imbalance or “balance error” in the balanced detector is identified by comparing an output of the balanced detector and an output of a photodiode that receives a portion of an input optical signal provided to the optical hybrid. Based on the balance error, electrical signals generated by the balanced detector or the power of optical signals passing through (or output from) the optical hybrid circuit can be adjusted so that the balance error is minimized or reduced to zero. As a result, imbalance associated with the balanced detector is corrected so that unwanted currents and/or related electrical signals are cancelled out or substantially cancelled out. Such unwanted currents and/or related electrical signals are generated in response to noise in the local oscillator light as well as intensity noise associated with non-selected optical signals in a superchannel.