摘要:
Embodiments addressing MAC processing for efficient use of high throughput systems are disclosed. In one aspect, an apparatus comprises a first layer for receiving one or more packets from one or more data flows and for generating one or more first layer Protocol Data Units (PDUs) from the one or more packets. In another aspect, a second layer is deployed for generating one or more MAC frames based on the one or more MAC layer PDUs. In another aspect, a MAC frame is deployed for transmitting one or more MAC layer PDUs. The MAC frame may comprise a control channel for transmitting one or more allocations. The MAC frame may comprise one or more traffic segments in accordance with allocations.
摘要:
Embodiments addressing MAC processing for efficient use of high throughput systems are disclosed. In one aspect, a protocol stack is disclosed comprising one or more of the following: an adaptation layer, a data link control layer, a physical layer, and a layer manager. In another aspect, physical layer feedback is used for adaptation layer processing. In one embodiment, physical layer feedback is used for segmentation. In another embodiment, physical layer feedback is used for multicast mapping onto one or more unicast channels. In another aspect, a data unit for transmission from a first station to a second station comprises zero or more complete sub-data units, zero or one partial sub-data units from a prior transmission, and zero or one partial sub-data units to fill the data unit. In one embodiment, a pointer may be used to indicate the location of any complete sub-data units.
摘要:
Embodiments addressing MAC processing for efficient use of high throughput systems are disclosed. In one aspect, a protocol stack is disclosed comprising one or more of the following: an adaptation layer, a data link control layer, a physical layer, and a layer manager. In another aspect, physical layer feedback is used for adaptation layer processing. In one embodiment, physical layer feedback is used for segmentation. In another embodiment, physical layer feedback is used for multicast mapping onto one or more unicast channels. In another aspect, a data unit for transmission from a first station to a second station comprises zero or more complete sub-data units, zero or one partial sub-data units from a prior transmission, and zero or one partial sub-data units to fill the data unit. In one embodiment, a pointer may be used to indicate the location of any complete sub-data units.
摘要:
Techniques for MAC processing for efficient use of high throughput systems that is backward compatible with various types of legacy systems are disclosed. In one aspect a first signal is transmitted according to a legacy transmission format to reserve a portion of a shared medium, and communication according to a second transmission format transpires during the reserved portion. In another aspect, a communication device may contend for access on a legacy system, and then communicate according to a new class communication protocol with one or more remote communication devices during the access period. In another aspect, a device may request access to a shared medium according to a legacy protocol, and, upon grant of access, the device may communicate with or facilitate communication between one or more remote stations according to a new protocol.
摘要:
A multi-antenna transmitting entity transmits data to a single- or multi-antenna receiving entity using (1) a steered mode to direct the data transmission toward the receiving entity or (2) a pseudo-random transmit steering (PRTS) mode to randomize the effective channels observed by the data transmission across the subbands. The PRTS mode may be used to achieve transmit diversity or spatial spreading. For transmit diversity, the transmitting entity uses different pseudo-random steering vectors across the subbands but the same steering vector across a packet for each subband. The receiving entity does not need to have knowledge of the pseudo-random steering vectors or perform any special processing. For spatial spreading, the transmitting entity uses different pseudo-random steering vectors across the subbands and different steering vectors across the packet for each subband. Only the transmitting and receiving entities know the steering vectors used for data transmission.
摘要:
A multi-antenna transmitting entity transmits data to a single- or multi-antenna receiving entity using (1) a steered mode to direct the data transmission toward the receiving entity or (2) a pseudo-random transmit steering (PRTS) mode to randomize the effective channels observed by the data transmission across the subbands. The PRTS mode may be used to achieve transmit diversity or spatial spreading. For transmit diversity, the transmitting entity uses different pseudo-random steering vectors across the subbands but the same steering vector across a packet for each subband. The receiving entity does not need to have knowledge of the pseudo-random steering vectors or perform any special processing. For spatial spreading, the transmitting entity uses different pseudo-random steering vectors across the subbands and different steering vectors across the packet for each subband. Only the transmitting and receiving entities know the steering vectors used for data transmission.
摘要:
A multi-antenna transmitting entity transmits data to a single- or multi-antenna receiving entity using (1) a steered mode to direct the data transmission toward the receiving entity or (2) a pseudo-random transmit steering (PRTS) mode to randomize the effective channels observed by the data transmission across the subbands. The PRTS mode may be used to achieve transmit diversity or spatial spreading. For transmit diversity, the transmitting entity uses different pseudo-random steering vectors across the subbands but the same steering vector across an entire packet for each subband. The receiving entity does not need to have knowledge of the pseudo-random steering vectors or perform any special processing. For spatial spreading, the transmitting entity uses different pseudo-random steering vectors across the subbands and different steering vectors across the packet for each subband. Only the transmitting and receiving entities know the steering vectors used for data transmission.
摘要:
Embodiments describe methods, systems, and devices that utilize positional information to determine location of other device and/or to provide a location-based message. A method can include receiving a location information of a mobile device and using an access point to transmit location information to one or more other devices that do not include location functionality that are in communication with the mobile device. The method can further include transmitting a message to the mobile device based at least in part on the received access location information. In another embodiment, the method can include receiving a user preference data from the mobile device or one or more other devices and transmitting a communication to the mobile device or one or more other devices that conforms to the user preference data.
摘要:
Techniques for performing open-loop rate control in a TDD communication system are described. The channel quality of a first link is estimated based on a transmission received via the first link. The channel quality of a second link is estimated based on the estimated channel quality of the first link and an asymmetric parameter. At least one rate for a data transmission via the second link is selected based on the estimated channel quality of the second link. The estimated channel quality for each link may be given by a set of SNR estimates for a set of transmission channels on that link. The asymmetric parameter may be determined based on (1) the capabilities (e.g., transmit power, receiver noise figure, and number of antennas) of the transmitting and receiving stations or (2) received SNRs for the first and second links.
摘要:
Techniques for MAC processing for efficient use of high throughput systems that may be backward compatible with various types of legacy systems are disclosed. In one aspect, a data frame is formed comprising a common portion for transmission in a format receivable by various stations, such as access points and remote stations. The data frame also comprises a dedicated portion, formatted for transmission to a specified remote station. In another aspect, the common portion is unsteered, and the dedicated portion is steered. In another aspect, an access point schedules an allocation in response to a data indication included in a common portion of a data frame transmitted from one remote station to another. In another aspect, a first station transmits a reference to a second station, which measures the reference and generates feedback therefrom.