摘要:
A parallel array architecture for a graphics processor includes a multithreaded core array including a plurality of processing clusters, each processing cluster including at least one processing core operable to execute a pixel shader program that generates pixel data from coverage data; a rasterizer configured to generate coverage data for each of a plurality of pixels; and pixel distribution logic configured to deliver the coverage data from the rasterizer to one of the processing clusters in the multithreaded core array. A crossbar coupled to each of the processing clusters is configured to deliver pixel data from the processing clusters to a frame buffer having a plurality of partitions.
摘要:
A parallel array architecture for a graphics processor includes a multithreaded core array including a plurality of processing clusters, each processing cluster including at least one processing core operable to execute a pixel shader program that generates pixel data from coverage data; a rasterizer configured to generate coverage data for each of a plurality of pixels; and pixel distribution logic configured to deliver the coverage data from the rasterizer to one of the processing clusters in the multithreaded core array. A crossbar coupled to each of the processing clusters is configured to deliver pixel data from the processing clusters to a frame buffer having a plurality of partitions.
摘要:
The number of crossbars in a graphics processing unit is reduced by assigning each of a plurality of pixels to one of a plurality of pixel shaders based at least in part on a location of each of the plurality of pixels within an image area, generating an attribute value for each of the plurality of pixels using the plurality of pixel shaders, mapping the attribute value of each of the plurality of pixels to one of a plurality of memory partitions, and storing the attribute values in the memory partitions according to the mapping. The attribute value generated by a particular one of the pixel shaders is mapped to the same one of the plurality of memory partitions.
摘要:
Apparatuses and methods for detecting position conflicts during fragment processing are described. Prior to executing a program on a fragment, a conflict detection unit, within a fragment processor checks if there is a position conflict indicating a RAW (read after write) hazard may exist. A RAW hazard exists when there is a pending write to a destination location that source data will be read from during execution of the program. When the fragment enters a processing pipeline, each destination location that may be written during the processing of the fragment is entered in conflict detection unit. During processing, the conflict detection unit is updated when a pending write to a destination location is completed.
摘要:
A programmable graphics system and method for processing high precision graphics data represented in one or more data formats in one or more passes. Graphics program instructions executed by the system control the processing and format conversion of the data. The program instructions and the data are stored in a memory accessible by the system. Within the memory, contiguous memory entries can contain program instructions or data represented in different formats. The format used to represent a particular data element within the data, is specified in the state information maintained in the system and is used to configure format conversion units within the system. High precision data, such as floating color, is processed by the programmable graphics system and output via a digital to analog converter (DAC) for display.
摘要:
A method and system for improving data coherency in a parallel rendering system is disclosed. Specifically, one embodiment of the present invention sets forth a method for managing a plurality of independently processed texture streams in a parallel rendering system that includes the steps of maintaining a time stamp for a group of tiles of work that are associated with each of the plurality of the texture streams and are associated with a specified area in screen space, and utilizing the time stamps to counter divergences in the independent processing of the plurality of texture streams.
摘要:
A system and method are provided for generating multiple output packets in a single processing pass of a shader in a hardware graphics pipeline. Initially, graphics data is received, after which it is processed utilizing the shader of the hardware graphics pipeline to generate a plurality of output packets. The plurality of output packets is outputted from the shader of the hardware graphics pipeline in the single processing pass.
摘要:
A method and system for improving data coherency in a parallel rendering system is disclosed. Specifically, one embodiment of the present invention sets forth a method for managing a plurality of independently processed texture streams in a parallel rendering system that includes the steps of maintaining a time stamp for a group of tiles of work that are associated with each of the plurality of the texture streams and are associated with a specified area in screen space, and utilizing the time stamps to counter divergences in the independent processing of the plurality of texture streams.
摘要:
A graphics pipeline system and method are provided for graphics processing. Such system includes a transform module adapted for receiving graphics data. The transform module serves to transform the graphics data from a first space to a second space. Coupled to the transform module is a lighting module which is positioned on the single semiconductor platform for performing lighting operations on the graphics data received from the transform module. Also included is a rasterizer coupled to the lighting module and positioned on the single semiconductor platform for rendering the graphics data received from the lighting module. During use, an antialiasing feature is implemented on the single semiconductor platform to improve a quality of the graphics rendering.
摘要:
Apparatuses and methods for detecting position conflicts during fragment processing are described. Prior to executing a program on a fragment, a conflict detection unit, within a fragment processor checks if there is a position conflict indicating a RAW (read after write) hazard may exist. A RAW hazard exists when there is a pending write to a destination location that source data will be read from during execution of the program. When the fragment enters a processing pipeline, each destination location that may be written during the processing of the fragment is entered in conflict detection unit. During processing, the conflict detection unit is updated when a pending write to a destination location is completed.