摘要:
Improved methods, systems, and apparatuses are disclosed for testing LGA devices. One example embodiment include vertical routing of test nest assembly cooling lines in order to minimize the test nest footprint and increase available test sites on a single test card. Another example embodiment includes isolating and adjusting external loads and moments into the heatsink/cold plate, wherein these loads and moments involve controlling the centroid to restore more ideal thermal performance of the heatsink/chip interface. Still another example embodiment includes a nest architecture facilitating easy and low-cost replacement of LGA sockets. Finally, another example embodiment includes efficient condensation control of test nest assembly parts by using dry-air exhaust.
摘要:
Improved methods, systems, and apparatuses are disclosed for testing LGA devices. One example embodiment include vertical routing of test nest assembly cooling lines in order to minimize the test nest footprint and increase available test sites on a single test card. Another example embodiment includes isolating and adjusting external loads and moments into the heatsink/cold plate, wherein these loads and moments involve controlling the centroid to restore more ideal thermal performance of the heatsink/chip interface. Still another example embodiment includes a nest architecture facilitating easy and low-cost replacement of LGA sockets. Finally, another example embodiment includes efficient condensation control of test nest assembly parts by using dry-air exhaust.
摘要:
Improved methods, systems, and apparatuses are disclosed for testing LGA devices. One example embodiment include vertical routing of test nest assembly cooling lines in order to minimize the test nest footprint and increase available test sites on a single test card. Another example embodiment includes isolating and adjusting external loads and moments into the heatsink/cold plate, wherein these loads and moments involve controlling the centroid to restore more ideal thermal performance of the heatsink/chip interface. Still another example embodiment includes a nest architecture facilitating easy and low-cost replacement of LGA sockets. Finally, another example embodiment includes efficient condensation control of test nest assembly parts by using dry-air exhaust.
摘要:
Improved methods, systems, and apparatuses are disclosed for testing LGA devices. One example embodiment include vertical routing of test nest assembly cooling lines in order to minimize the test nest footprint and increase available test sites on a single test card. Another example embodiment includes isolating and adjusting external loads and moments into the heatsink/cold plate, wherein these loads and moments involve controlling the centroid to restore more ideal thermal performance of the heatsink/chip interface. Still another example embodiment includes a nest architecture facilitating easy and low-cost replacement of LGA sockets. Finally, another example embodiment includes efficient condensation control of test nest assembly parts by using dry-air exhaust.
摘要:
Improved methods, systems, and apparatuses are disclosed for testing LGA devices. One example embodiment include vertical routing of test nest assembly cooling lines in order to minimize the test nest footprint and increase available test sites on a single test card. Another example embodiment includes isolating and adjusting external loads and moments into the heatsink/cold plate, wherein these loads and moments involve controlling the centroid to restore more ideal thermal performance of the heatsink/chip interface. Still another example embodiment includes a nest architecture facilitating easy and low-cost replacement of LGA sockets. Finally, another example embodiment includes efficient condensation control of test nest assembly parts by using dry-air exhaust.
摘要:
Improved methods, systems, and apparatuses are disclosed for testing LGA devices. One example embodiment include vertical routing of test nest assembly cooling lines in order to minimize the test nest footprint and increase available test sites on a single test card. Another example embodiment includes isolating and adjusting external loads and moments into the heatsink/cold plate, wherein these loads and moments involve controlling the centroid to restore more ideal thermal performance of the heatsink/chip interface. Still another example embodiment includes a nest architecture facilitating easy and low-cost replacement of LGA sockets. Finally, another example embodiment includes efficient condensation control of test nest assembly parts by using dry-air exhaust.
摘要:
Improved methods, systems, and apparatuses are disclosed for testing LGA devices. One example embodiment include vertical routing of test nest assembly cooling lines in order to minimize the test nest footprint and increase available test sites on a single test card. Another example embodiment includes isolating and adjusting external loads and moments into the heatsink/cold plate, wherein these loads and moments involve controlling the centroid to restore more ideal thermal performance of the heatsink/chip interface. Still another example embodiment includes a nest architecture facilitating easy and low-cost replacement of LGA sockets. Finally, another example embodiment includes efficient condensation control of test nest assembly parts by using dry-air exhaust.
摘要:
Improved methods, systems, and apparatuses are disclosed for testing LGA devices. One example embodiment include vertical routing of test nest assembly cooling lines in order to minimize the test nest footprint and increase available test sites on a single test card. Another example embodiment includes isolating and adjusting external loads and moments into the heatsink/cold plate, wherein these loads and moments involve controlling the centroid to restore more ideal thermal performance of the heatsink/chip interface. Still another example embodiment includes a nest architecture facilitating easy and low-cost replacement of LGA sockets. Finally, another example embodiment includes efficient condensation control of test nest assembly parts by using dry-air exhaust.
摘要:
Improved methods, systems, and apparatuses are disclosed for testing LGA devices. One example embodiment include vertical routing of test nest assembly cooling lines in order to minimize the test nest footprint and increase available test sites on a single test card. Another example embodiment includes isolating and adjusting external loads and moments into the heatsink/cold plate, wherein these loads and moments involve controlling the centroid to restore more ideal thermal performance of the heatsink/chip interface. Still another example embodiment includes a nest architecture facilitating easy and low-cost replacement of LGA sockets. Finally, another example embodiment includes efficient condensation control of test nest assembly parts by using dry-air exhaust.
摘要:
A chip testing system with improved thermal performance. In a preferred embodiment, a nest assembly of a chip testing apparatus includes tooling balls and a fitted frame for improving alignment of a coldplate and a chip surface. In preferred embodiments, the coldplate is of unibody design. Thermal performance is also improved by balancing the forces exerted on the coldplate using an adjustable hose mounting bracket. The bracket allows the forces exerted by the hoses on the coldplate to be adjusted so they balance and cancel other unwanted forces on the cold plate.