摘要:
The invention provides a process for removing discharged active zinc-containing material from a mechanically rechargeable zinc battery anode, containing the same, the anode being of the type comprising a skeletal frame, including conductive metal and having a portion of a surface area thereof formed as open spaces, and an active zinc anode component compacted into a rigid static bed of active anode material encompassing the skeletal frame, and having two opposite major surfaces, the process comprising introducing the anode between a pair of spaced-apart first and second crusher plates, each of the crusher plates being provided with a plurality of pointed projections of varying heights and a plurality of recesses of varying depths, the crusher plates being aligned with each other to the effect that tips of projections of the first crusher plate substantially mutually occlude with recesses provided on the second crusher plate and tips of projections of the second crusher plate substantially mutually occlude with recesses provided on the first surface; abruptly reducing the space between adjacent crusher plates said anode bed; moving said crusher plates away from said deformed anode bed and then displacing said deformed bed, along at least a first axis, by at least half the distance between adjacent projection tips of at least one of said crusher plates; again abruptly reducing the space between adjacent crusher plates; and repeating the last two steps until the fragmentation of the bed and the dislodgement of the resulting fragmented particles from the skeletal frame are achieved.
摘要:
A process for the preparation of an alkaline-zinc slurry for use in batteries, the slurry comprising an admixture of (a) at least partly oxidized zinc; (b) an aqueous solution of at least one Group Ia metal; and (c) an inorganic or organic inhibitor. The process includes the steps of electrolyzing the admixture in a cell with a corrosion-resistant anode and a non-zinc-adherent cathode such that the zinc deposits on the cathode self-detach or are removed until no more than a preselected amount of zinc remains in the solution, provided that the current density at the cathode is preselected so that the electrowon zinc will have, after homogenizing into particles, a density within the range 0.2-2.0 g/cc and a surface area within the range 0.5-6.0 m.sup.2 /g; removing zinc from the cathode and homogenizing it into particles; and combining the homogenized zinc particles with additional aqueous Group Ia metal hydroxide and optionally with other makeup components selected from the group consisting of water and inhibitor to form a charged slurry.
摘要:
A method of producing a mercury-free corrosion resistant dendritic zinc alloy powder is provided. According to the method an electrolytic cell is prepared that contains an aqueous alkaline electrolyte with a preselected concentration of dissolved zinc cations and optionally the cations of one or more soluble inhibitor metals. The cell also contains a non-zinc adherent cathode, a first anode, and a second anode. The second anode comprises an inhibitor metal, the salts of which are only sparingly soluble in the alkaline electrolyte. For example, the second anode may comprise a minor anode of indium or bismuth interposed between the first or major anode and the cathode. A first voltage between the first anode and cathode is then applied to establish a desired cathode current density and the deposition of dendritic zinc and optional soluble inhibitor metals on the cathode. Concurrently a second voltage between the second anode and cathode is applied to establish a desired current density at the second anode and the simultaneous co-deposition of a desired concentration of the first inhibitor metal in the dendritic zinc being deposited on the cathode. Intermittently the deposited zinc alloy is removed from the cathode and homogenized into a plurality of dendritic zinc alloy particles. According to the method, mercury-free electrolytic zinc alloy powders with effective corrosion inhibiting concentrations of indium and/or bismuth either alone or in combination with other inhibitor metals can be produced. The corrosion resistant zinc alloy powders have a dendritic morphology that is advantageous for battery applications.
摘要:
An electrochemically prepared, high-performance, zinc powder has an apparent density of about 0.2-2 g/cc and a surface area of about 0.5-6 m.sup.2 /gm and further has at least one corrosion inhibitor metal intrinsically alloyed therein.