摘要:
There is provided alkaloid halogen-doped sulfide glasses for an optical amplifier and a fabricating method thereof. An alkaloid halogen-doped sulfide glass is formed of silica doped with a Ge—Ga—S three-component system, Pr3+, and an alkaloid halogen. To fabricate the alkaloid halogen-doped sulfide glass for an optical amplifier, silica doped with Ge, Ga, S, Pr3+, and an alkaloid halogen as a starting material is filled into a container. The container is sealed in a vacuum and the starting material in the container is fused by heating the container. The container is cooled and the starting material is sintered by heating the container at a glass transition temperature.
摘要:
An optical fiber used for an optical amplifier, is formed by doping glass with rare-earth ions. Both praseodymium ions (Pr+3) and erbium ions (Er+3) are used as the rare-earth ions, and the glass is a fluoride glass or a sulfide glass. The optical fiber can be used at wavelengths of both 1.3 &mgr;m and 1.55 &mgr;m. The light amplification efficiency of an optical amplifier made of the optical fiber can be improved compared to that of an optical amplifier formed of only Pr+3 or only Er+3.
摘要:
The present invention relates to a backlight assembly, in which a lamp starting performance can be improved and an assembly process can be simplified, a liquid crystal display having the backlight assembly, and a method of manufacturing the backlight assembly. A backlight assembly according to the present invention includes a body, a phosphor film formed on an inside of the body, and an afterglowing material film formed on the outside of the body. Accordingly, a dark starting time can be shortened by improving a lamp starting performance of a light source.
摘要:
A fluorescent lamp includes a lamp body, a fluorescent layer and a discharge electrode. The lamp body has a discharge space in which ultraviolet light is generated. The fluorescent layer is formed on an inner surface of the lamp body to change the ultraviolet light into visible light. The discharge electrode is on an end portion of the lamp body to apply a voltage to the discharge space. A ratio of intensities of the visible light at wavelengths of about 545 nm and about 516 nm is about 1.32:1 to about 1.71:1. Therefore, color reproducibility and luminance may be improved.
摘要:
A light source module includes first and second light sources. The first light source includes a blue light-emitting body emitting blue light and a red fluorescent material disposed around the blue light-emitting body emitting red light by virtue of being excited by the blue light. The second light source is disposed adjacent to the first light source, and includes a green light-emitting body emitting green light. The blue and green light-emitting materials may include a light-emitting diode (LED) chip including substantially the same material. Accordingly, since a variation of light efficiency of the light source module with respect to temperature is small, a color feedback system may be omitted, and color reproducibility may be high.
摘要:
A light source module includes first and second light sources. The first light source includes a blue light-emitting body emitting blue light and a red fluorescent material disposed around the blue light-emitting body emitting red light by virtue of being excited by the blue light. The second light source is disposed adjacent to the first light source, and includes a green light-emitting body emitting green light. The blue and green light-emitting materials may include a light-emitting diode (LED) chip including substantially the same material. Accordingly, since a variation of light efficiency of the light source module with respect to temperature is small, a color feedback system may be omitted, and color reproducibility may be high.
摘要:
A fluorescent lamp includes a lamp body, a fluorescent layer and a discharge electrode. The lamp body has a discharge space in which ultraviolet light is generated. The fluorescent layer is formed on an inner surface of the lamp body to change the ultraviolet light into visible light. The discharge electrode is on an end portion of the lamp body to apply a voltage to the discharge space. A ratio of intensities of the visible light at wavelengths of about 545 nm and about 516 nm is about 1.32:1 to about 1.71:1. Therefore, color reproducibility and luminance may be improved.