Abstract:
A laser system may include one or more of the following components: a power supply, a continuous wave pump laser, a fiber optic cable, a positive lens, a gain medium, a heat sink, and/or a Q-switch. The laser system may be used in a light detection and ranging (LIDAR) system such as a scanning LIDAR system. The laser system may be designed to operate at wavelengths that may be safe for human eyes.
Abstract:
Examples of the present invention include integrated erbium-doped waveguide lasers designed for silicon photonic systems. In some examples, these lasers include laser cavities defined by distributed Bragg reflectors (DBRs) formed in silicon nitride-based waveguides. These DBRs may include grating features defined by wafer-scale immersion lithography, with an upper layer of erbium-doped aluminum oxide deposited as the final step in the fabrication process. The resulting inverted ridge-waveguide yields high optical intensity overlap with the active medium for both the 980 nm pump (89%) and 1.5 μm laser (87%) wavelengths with a pump-laser intensity overlap of over 93%. The output powers can be 5 mW or higher and show lasing at widely-spaced wavelengths within both the C- and L-bands of the erbium gain spectrum (1536, 1561 and 1596 nm).
Abstract:
Layered glass structures and fabrication methods are described. The methods include depositing soot on a dense glass substrate to form a composite structure and sintering the composite structure to form a layered glass structure. The dense glass substrate may be derived from an optical fiber preform that has been modified to include a planar surface. The composite structure may include one or more soot layers. The layered glass structure may be formed by combining multiple composite structures to form a stack, followed by sintering and fusing the stack. The layered glass structure may further be heated to softening and drawn to control linear dimensions. The layered glass structure or drawn layered glass structure may be configured as a planar waveguide.
Abstract:
A microlaser system, including a microlaser, having an elongated generally cylindrical substrate, a thin dopant film encircling at least a portion of the substrate, and a pumping laser positioned to shine onto the thin film. The thin film is between about 2 and about 10 microns thick. When the pumping laser shines on the thin film, the thin film lases in whispering gallery mode. The dopant is preferably selected from the group including transition metals and rare-earth elements. In a most preferred embodiment, the thin film is titanium-doped amorphous aluminum nitride.
Abstract:
A three dimensional imaging camera comprises a system controller, pulsed laser transmitter, receiving optics, an infrared focal plane array light detector, and an image processor. The described invention is capable of developing a complete 3-D scene from a single point of view. The 3-D imaging camera utilizes a pulsed laser transmitter capable of illuminating an entire scene with a single high power flash of light. The 3-D imaging camera employs a system controller to trigger a pulse of high intensity light from the pulsed laser transmitter, and counts the time from the start of the transmitter light pulse. The light reflected from the illuminated scene impinges on a receiving optics and is detected by a focal plane array optical detector. An image processor applies image enhancing algorithms to improve the image quality and develop object data for subjects in the field of view of the flash ladar imaging camera.
Abstract:
Examples of the present invention include integrated erbium-doped waveguide lasers designed for silicon photonic systems. In some examples, these lasers include laser cavities defined by distributed Bragg reflectors (DBRs) formed in silicon nitride-based waveguides. These DBRs may include grating features defined by wafer-scale immersion lithography, with an upper layer of erbium-doped aluminum oxide deposited as the final step in the fabrication process. The resulting inverted ridge-waveguide yields high optical intensity overlap with the active medium for both the 980 nm pump (89%) and 1.5 μm laser (87%) wavelengths with a pump-laser intensity overlap of over 93%. The output powers can be 5 mW or higher and show lasing at widely-spaced wavelengths within both the C- and L-bands of the erbium gain spectrum (1536, 1561 and 1596 nm).
Abstract:
A pump device for pumping an amplifying laser medium (1), having a radiation source (13) with a plurality of laser diodes (15, 16) that emit laser beams (17) which have parallel beam axes (a) extending in the direction of a z axis and which diverge at least twice as much in the direction of an x axis perpendicular to the z axis as in the direction of a y axis perpendicular to the z axis and to the x axis. The pump device also has at least one optical component (22, 22′, 22″) with at least one cylinder surface (23), with which at least some of the laser beams (17) emitted by the laser diodes (15, 16) interact. The cylinder surface (23) lies parallel to the x axis and is curved on a plane perpendicular to the x axis.
Abstract:
A pump device for pumping an amplifying laser medium (1), having a radiation source (13) with a plurality of laser diodes (15, 16) that emit laser beams (17) which have parallel beam axes (a) extending in the direction of a z axis and which diverge at least twice as much in the direction of an x axis perpendicular to the z axis as in the direction of a y axis perpendicular to the z axis and to the x axis. The pump device also has at least one optical component (22, 22′, 22″) with at least one cylinder surface (23), with which at least some of the laser beams (17) emitted by the laser diodes (15, 16) interact. The cylinder surface (23) lies parallel to the x axis and is curved on a plane perpendicular to the x axis.
Abstract:
A three dimensional imaging camera comprises a system controller, pulsed laser transmitter, receiving optics, an infrared focal plane array light detector, and an image processor. The described invention is capable of developing a complete 3-D scene from a single point of view. The 3-D imaging camera utilizes a pulsed laser transmitter capable of illuminating an entire scene with a single high power flash of light. The 3-D imaging camera employs a system controller to trigger a pulse of high intensity light from the pulsed laser transmitter, and counts the time from the start of the transmitter light pulse. The light reflected from the illuminated scene impinges on a receiving optics and is detected by a focal plane array optical detector. An image processor applies image enhancing algorithms to improve the image quality and develop object data for subjects in the field of view of the flash ladar imaging camera.