摘要:
Methods of forming a single crystal semiconductor thin film on an insulator and semiconductor devices fabricated thereby are provided. The methods include forming an interlayer insulating layer on a single crystal semiconductor layer. A single crystal semiconductor plug is formed to penetrate the interlayer insulating layer. A semiconductor oxide layer is formed within the single crystal semiconductor plug using an ion implantation technique and an annealing technique. As a result, the single crystal semiconductor plug is divided into a lower plug and an upper single crystal semiconductor plug with the semiconductor oxide layer being interposed therebetween. That is, the upper single crystal semiconductor plug is electrically insulated from the lower plug by the semiconductor oxide layer. A single crystal semiconductor pattern is formed to be in contact with the upper single crystal semiconductor plug and cover the interlayer insulating layer. The single crystal semiconductor pattern is grown by an epitaxy growth technique using the upper single crystal semiconductor plug as a seed layer, or by a solid epitaxy growth technique using the upper single crystal semiconductor plug as a seed layer.
摘要:
Methods of forming a single crystal semiconductor thin film on an insulator and semiconductor devices fabricated thereby are provided. The methods include forming an interlayer insulating layer on a single crystal semiconductor layer. A single crystal semiconductor plug is formed to penetrate the interlayer insulating layer. A semiconductor oxide layer is formed within the single crystal semiconductor plug using an ion implantation technique and an annealing technique. As a result, the single crystal semiconductor plug is divided into a lower plug and an upper single crystal semiconductor plug with the semiconductor oxide layer being interposed therebetween. That is, the upper single crystal semiconductor plug is electrically insulated from the lower plug by the semiconductor oxide layer. A single crystal semiconductor pattern is formed to be in contact with the upper single crystal semiconductor plug and cover the interlayer insulating layer. The single crystal semiconductor pattern is grown by an epitaxy growth technique using the upper single crystal semiconductor plug as a seed layer, or by a solid epitaxy growth technique using the upper single crystal semiconductor plug as a seed layer.
摘要:
SRAM cells having landing pads in contact with upper and lower cell gate patterns, and methods of forming the same are provided. The SRAM cells and the methods remove the influence resulting from structural characteristics of the SRAM cells having vertically stacked upper and lower gate patterns, for stably connecting the patterns on the overall surface of the semiconductor substrate. An isolation layer isolating at least one lower active region is formed in a semiconductor substrate of the cell array region. The lower active region has two lower cell gate patterns. A body pattern is disposed in parallel with the semiconductor substrate. The body pattern is formed to confine an upper active region, which has upper cell gate patterns on the lower cell gate patterns. A landing pad is disposed between the lower cell gate patterns. A node pattern is formed to simultaneously contact the upper cell gate pattern and the lower cell gate pattern.
摘要:
SRAM cells having landing pads in contact with upper and lower cell gate patterns, and methods of forming the same are provided. The SRAM cells and the methods remove the influence resulting from structural characteristics of the SRAM cells having vertically stacked upper and lower gate patterns, for stably connecting the patterns on the overall surface of the semiconductor substrate. An isolation layer isolating at least one lower active region is formed in a semiconductor substrate of the cell array region. The lower active region has two lower cell gate patterns. A body pattern is disposed in parallel with the semiconductor substrate. The body pattern is formed to confine an upper active region, which has upper cell gate patterns on the lower cell gate patterns. A landing pad is disposed between the lower cell gate patterns. A node pattern is formed to simultaneously contact the upper cell gate pattern and the lower cell gate pattern.
摘要:
SRAM cells having landing pads in contact with upper and lower cell gate patterns, and methods of forming the same are provided. The SRAM cells and the methods remove the influence resulting from structural characteristics of the SRAM cells having vertically stacked upper and lower gate patterns, for stably connecting the patterns on the overall surface of the semiconductor substrate. An isolation layer isolating at least one lower active region is formed in a semiconductor substrate of the cell array region. The lower active region has two lower cell gate patterns. A body pattern is disposed in parallel with the semiconductor substrate. The body pattern is formed to confine an upper active region, which has upper cell gate patterns on the lower cell gate patterns. A landing pad is disposed between the lower cell gate patterns. A node pattern is formed to simultaneously contact the upper cell gate pattern and the lower cell gate pattern.
摘要:
SRAM cells having landing pads in contact with upper and lower cell gate patterns, and methods of forming the same are provided. The SRAM cells and the methods remove the influence resulting from structural characteristics of the SRAM cells having vertically stacked upper and lower gate patterns, for stably connecting the patterns on the overall surface of the semiconductor substrate. An isolation layer isolating at least one lower active region is formed in a semiconductor substrate of the cell array region. The lower active region has two lower cell gate patterns. A body pattern is disposed in parallel with the semiconductor substrate. The body pattern is formed to confine an upper active region, which has upper cell gate patterns on the lower cell gate patterns. A landing pad is disposed between the lower cell gate patterns. A node pattern is formed to simultaneously contact the upper cell gate pattern and the lower cell gate pattern.
摘要:
Semiconductor integrated circuit devices having single crystalline thin film transistors and methods of fabricating the same are provided. The semiconductor integrated circuit devices include an interlayer insulating layer formed on a semiconductor substrate and a single crystalline semiconductor plug penetrating the interlayer insulating layer. A single crystalline semiconductor body pattern is provided on the interlayer insulating layer. The single crystalline semiconductor body pattern has an elevated region and contacts the single crystalline semiconductor plug. The method of forming the single crystalline semiconductor body pattern having the elevated region includes forming a sacrificial layer pattern covering the single crystalline semiconductor plug on the interlayer insulating layer. A capping layer is formed to cover the sacrificial layer pattern and the interlayer insulating layer, and the capping layer is patterned to form an opening which exposes a portion of the sacrificial layer pattern. Subsequently, the sacrificial layer pattern is selectively removed to form a cavity in the capping layer, and a planarized single crystalline semiconductor body pattern is formed to fill the cavity and the opening.
摘要:
Methods of fabricating a semiconductor integrated circuit having thin film transistors using an SEG technique are provided. The methods include forming an inter-layer insulating layer on a single-crystalline semiconductor substrate. A single-crystalline semiconductor plug extends through the inter-layer insulating layer, and a single-crystalline epitaxial semiconductor pattern is in contact with the single-crystalline semiconductor plug on the inter-layer insulating layer. The single-crystalline epitaxial semiconductor pattern is at least partially planarized to form a semiconductor body layer on the inter-layer insulating layer, and the semiconductor body layer is patterned to form a semiconductor body. As a result, the semiconductor body includes at least a portion of the single-crystalline epitaxial semiconductor pattern. Thus, the semiconductor body has an excellent single-crystalline structure. Semiconductor integrated circuits fabricated using the methods are also provided.
摘要:
Methods of fabricating semiconductor devices are provided. An interlayer insulating layer is provided on a single crystalline semiconductor substrate. A single crystalline semiconductor plug is provided that extends through the interlayer insulating layer and a molding layer pattern is provided on the semiconductor substrate and the single crystalline semiconductor plug. The molding layer pattern defines an opening therein that at least partially exposes a portion of the single crystalline semiconductor plug. A single crystalline semiconductor epitaxial pattern is provided on the exposed portion of single crystalline semiconductor plug using a selective epitaxial growth technique that uses the exposed portion of the single crystalline semiconductor plug as a seed layer. A single crystalline semiconductor region is provided in the opening. The single crystalline semiconductor region includes at least a portion of the single crystalline semiconductor epitaxial pattern.
摘要:
Methods of fabricating semiconductor devices are provided. An interlayer insulating layer is provided on a single crystalline semiconductor substrate. A single crystalline semiconductor plug is provided that extends through the interlayer insulating layer and a molding layer pattern is provided on the semiconductor substrate and the single crystalline semiconductor plug. The molding layer pattern defines an opening therein that at least partially exposes a portion of the single crystalline semiconductor plug. A single crystalline semiconductor epitaxial pattern is provided on the exposed portion of single crystalline semiconductor plug using a selective epitaxial growth technique that uses the exposed portion of the single crystalline semiconductor plug as a seed layer. A single crystalline semiconductor region is provided in the opening. The single crystalline semiconductor region includes at least a portion of the single crystalline semiconductor epitaxial pattern.