摘要:
Provided are an apparatus and method for efficiently and dynamically allocating a bandwidth on a Time Division Multiple Access-based Passive Optical Network (TDMA PON). The dynamic bandwidth allocation apparatus for uplink data transmission of a plurality of Optical Network Units (ONUs) including a plurality of class queues corresponding to Transmission Container (T-CONT) types, the plurality of ONUs connected to an Optical Line Terminal (OLT) on a Passive Optical Network (PON), includes: a class queue information storage unit storing information regarding a bandwidth allocation period and an allocatable bandwidth amount for each T-CONT type; an allocation check table unit checking the bandwidth allocation period for the T-CONT type received from the class queue information storage unit, and determining an allocatable bandwidth amount for the T-CONT type; and a bandwidth allocation unit allocating an uplink bandwidth to the T-CONT type with reference to the bandwidth allocation period and the allocatable bandwidth amount for the T-CONT type, and re-allocating to each ONU an uplink bandwidth remaining after allocating a total uplink bandwidths to all T-CONT types.
摘要:
A burst mode optical repeater is provided. The burst mode optical repeater receives optical signals, which are transmitted from a plurality of optical network units (ONUs) in a passive optical network (PON) to a central office using a time division multiplexing access (TDMA) method, and relays the received optical signals using an optical-electrical-optical (OEO) method. Since the burst mode optical repeater can be installed anywhere between an optical line terminal (OLT) and the ONUs, the number of subscribers and transmission range that can be supported by a corresponding network can be increased.
摘要:
A burst mode optical repeater is provided. The burst mode optical repeater receives optical signals, which are transmitted from a plurality of optical network units (ONUs) in a passive optical network (PON) to a central office using a time division multiplexing access (TDMA) method, and relays the received optical signals using an optical-electrical-optical (OEO) method. Since the burst mode optical repeater can be installed anywhere between an optical line terminal (OLT) and the ONUs, the number of subscribers and transmission range that can be supported by a corresponding network can be increased.
摘要:
Provided are an apparatus and method for efficiently and dynamically allocating a bandwidth on a Time Division Multiple Access-based Passive Optical Network (TDMA PON). The dynamic bandwidth allocation apparatus for uplink data transmission of a plurality of Optical Network Units (ONUs) including a plurality of class queues corresponding to Transmission Container (T-CONT) types, the plurality of ONUs connected to an Optical Line Terminal (OLT) on a Passive Optical Network (PON), includes: a class queue information storage unit storing information regarding a bandwidth allocation period and an allocatable bandwidth amount for each T-CONT type; an allocation check table unit checking the bandwidth allocation period for the T-CONT type received from the class queue information storage unit, and determining an allocatable bandwidth amount for the T-CONT type; and a bandwidth allocation unit allocating an uplink bandwidth to the T-CONT type with reference to the bandwidth allocation period and the allocatable bandwidth amount for the T-CONT type, and re-allocating to each ONU an uplink bandwidth remaining after allocating a total uplink bandwidths to all T-CONT types.
摘要:
Disclosed are a multiple passive optical network system and a wavelength splitter/combiner used in the same. The multiple passive optical network (PON) system includes a first PON, and a second PON which provides a service different in speed and capacity from the first PON while partially sharing network resources with the first PON. Thereby a subscriber can receive service through a network having a desired capacity and speed.
摘要:
A burst-mode optical receiver is provided. The burst-mode optical receiver includes a preamplifier, a post-amplifier integrated into one body together with the preamplifier, and an operation controller for controlling operation of the preamplifier and the post-amplifier using an external reset signal input from a single external reset input terminal. As a result, it is possible to implement a burst-mode receiver for a gigabit-capable passive optical network (GPON) in which a preamplifier unit and a post-amplifier unit are integrated.